Vectors Test 2A

Name:

8 9 10 11 12

Question: 1

A vector of magnitude 6 in the opposite direction to: $\underline{a} = 12\underline{i} - 6\underline{j} + 12\underline{k}$

a)
$$2(2i-j+2k)$$

b)
$$2\left(-2\underline{i} + \underline{j} - 2\underline{k}\right)$$

c)
$$6\left(-2\underline{i} + \underline{j} - 2\underline{k}\right)$$

d)
$$12(4i - 2j + 4k)$$

e)
$$12\left(2\underline{i} - \underline{j} + 2\underline{k}\right)$$

Question: 2

In the cube below, P is the midpoint of HG. Vector AP can be written as:

a)
$$h = \frac{1}{2}(a - b)$$

b)
$$\frac{1}{2}(a+e+h)$$

c)
$$h + \frac{1}{2}h - \frac{3}{2}a$$

d)
$$h + \frac{1}{2}(a+b)$$

e)
$$\frac{3}{2}a + \frac{1}{2}b + e + h$$

a=OA

e=OE

b=OB

h=OH

Question: 3

Vector $\underline{a} = 3\underline{i} + m\underline{j} + n\underline{k}$ is perpendicular to vector $\underline{b} = 4\underline{i} + 2\underline{j} + 4\underline{k}$ and $c = 5\underline{i} + \underline{j} + \underline{k}$ the values of mand n are:

a)
$$m = -2$$
$$n = 9$$

b)
$$m = 9$$

 $n = -24$

$$m = -24$$
 b) $m = 9$ c) $m = -22.5$ d) $m = 8.5$ e) None of these $n = -22.5$

d)
$$m = 8.5$$

 $n = -22.5$

Question: 4

The scalar resolute of $\underline{a} = 3\underline{i} + 3\underline{k}$ in the direction of $\underline{b} = 2\underline{i} + \underline{j} + 2\underline{k}$ is:

a)
$$2\sqrt{2}$$

b)
$$2\sqrt{2}\left(2i+j+2k\right)$$

c)
$$2\sqrt{2}(3i+3k)$$

e)
$$4(2i + j + k)$$

Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question: 5

The angle between vector $\underline{a} = 3\underline{i} + 3\underline{k}$ and vector $\underline{b} = 2\underline{i} + 2\underline{j} + n\underline{k}$ is $\frac{\pi}{3}$, the value of *n* is therefore:

b)
$$\frac{1}{6}$$

b)
$$\frac{1}{6}$$
 c) $\frac{\sqrt{3}}{6}$ d) $\frac{\sqrt{2}}{2}$

d)
$$\frac{\sqrt{2}}{2}$$

If $\underline{a} = 2\underline{i} + \underline{j} + 3\underline{k}$, $\underline{b} = 3\underline{i} + 2\underline{j} + 5\underline{k}$ and $\underline{c} = \underline{i} + 4\underline{j} + n\underline{k}$ are linearly dependent then:

a)
$$n=0$$

b)
$$n = 5$$

c)
$$n \neq 3$$

d)
$$n = -5$$

$$n = 0$$
 b) $n = 5$ c) $n \neq 5$ d) $n = -5$ e) $n = 5$ or $n = 5$ or $n = -5$

Question: 7

Which one of the following is NOT a unit vector?

a)
$$\frac{1}{3} \left(i + j + k \right)$$

b)
$$\frac{1}{3} (2i + j + 2k)$$

c)
$$\frac{1}{13} \left(12i + 4j + 3k \right)$$

d)
$$\frac{1}{6} \left(4 \underbrace{i} + 2 \underbrace{j} + 4 \underbrace{k} \right)$$

e)
$$\frac{1}{5}(3i+4k)$$

Question: 8

If $|\underline{a}| = 2$ and $|\underline{b}| = 3$ and $\underline{a} \cdot \underline{b} = -3\sqrt{2}$ then $|\underline{a} - \underline{b}|^2$ is equal to:

c)
$$13-6\sqrt{2}$$
 d) $13+6\sqrt{2}$ e) $25+6\sqrt{2}$

d)
$$13+6\sqrt{2}$$

e)
$$25 + 6\sqrt{2}$$

Question: 9

If $\underline{a} = \frac{1}{2} \left(\underline{i} - \underline{j} + \sqrt{2}\underline{k} \right)$ and $\underline{b} = \frac{1}{2} \left(\underline{i} - \underline{j} - \sqrt{2}\underline{k} \right)$ then which of the following is **NOT** true?

a)
$$a$$
 is perpendicular to b

b)
$$|a| = |b| = 1$$

c) Both
$$\underline{a}$$
 and \underline{b} make angles of 60° with the x axis.

Both \underline{a} and \underline{b} make angles of 120° with the y

Vector \underline{a} make angles of 135° with the z

axis, and vector b make angles of 45° with the z axis,

Question: 10

A unit vector perpendicular to

a)
$$\frac{\sqrt{2}}{6} \left(-3i - 3k \right)$$

a)
$$\frac{\sqrt{2}}{6}(-3i - 3k)$$
 b) $\frac{\sqrt{2}}{6}(-3i + 3k)$ c) $\frac{\sqrt{2}}{6}(3i - 3k)$

c)
$$\frac{\sqrt{2}}{6} (3i - 3k)$$

d)
$$\frac{1}{6} \left(4i + 4j - 2k \right)$$

d)
$$\frac{1}{6} \left(4i + 4j - 2k \right)$$
 e) $\frac{1}{6} \left(-4i - 4j + 2k \right)$