That Area Is So Regular

Time Required
45 minutes

Activity Overview
In this activity, students will investigate the formula for the area of regular polygons given the length of one side. Students will be asked inquiry questions to assist them in deriving the formula for a regular polygon with $n=3,4$, and 5 sides. They will then use the patterns they discovered to find the formula for the area of a regular polygon of n sides.

Topic: Right Triangles \& Trigonometric Ratios

- Regular Polygons
- Area
- Trigonometry

Teacher Preparation and Notes

- This activity was written to be explored with the Learning Check app on the TI-84 Plus.
- Before beginning this activity, make sure that all students have the Learning Check application and the Learning Check file AreaRegular.edc loaded on their TI-84 Plus graphing calculators.
- To download the Learning Check document (.edc file) and student worksheet, go to education.ti.com/exchange and enter "11686" in the quick search box.

Associated Materials

- GeoWeek15_AreaRegular_Worksheet_TI84.doc
- AreaRegular.edc

Suggested Related Activities
To download any activity listed, go to education.ti.com/exchange and enter the number in the quick search box.

- Area of a Regular Polygons (TI-84 Plus) - 7227
- Inscribed Regular Polygons (TI-Nspire technology) - 9203
- Areas of Regular Polygons and Circles (TI-84 Plus) - 7340

Problem 1 - Discovering the Area of a Regular Polygon Given the Length of Each Side.
In this activity, students will investigate the area of a regular polygon given the length of one side.
Beginning with the formula for the area of a regular polygon (one half times the apothem times the perimeter), we will derive the formula for the area of a regular polygon in terms of the length of one side.

Students will first derive the formula for an equilateral triangle. Students are asked inquiry
 questions designed to lead them to the formula Area $=\frac{3 \cdot s^{2}}{4 \tan \left(60^{\circ}\right)}$.

This part of the activity may be best explored as a teacher led activity.

Students will then be asked to derive the formula for a regular polygon with $n=4$ and $n=5$ sides. The goal is for students to develop the pattern in order to find the formula for a regular polygon of n sides. Therefore, Problem 1 is very repetitive, but the repetition is very important for pattern recognition.
The formula for $n=4$ is Area $=\frac{4 \cdot s^{2}}{4 \tan \left(45^{\circ}\right)}$ and the

formula for $n=5$ is Area $=\frac{5 \cdot s^{2}}{4 \tan \left(36^{\circ}\right)}$.
Eventually, students will be asked to derive the formula for a regular polygon with n sides each of length s through inquiry questions that are identical to the questions for $n=3,4$, and 5 . The formula is Area $=\frac{n \cdot s^{2}}{4 \tan \left(\frac{180^{\circ}}{n}\right)}$.

Problem 2 - Applications of the Area of a Regular Polygon
For this problem students will be asked to apply the formula they developed in Problem 1.

Problem 3 - Real-World Applications of the Area of Regular Polygons

In this problem, students are asked to solve realworld applications of the area of regular polygons. They are asked to find areas of a stop sign, a yield sign, the Pentagon Building, and the Sigil of Ameth.

Student Solutions

1. Area $=\frac{1}{2}($ apothem $)($ perimeter $)$
2. $\frac{360}{4}=90$
3. $\frac{360}{5}=72$
4. $\frac{360}{n}$
5. $p=n s$
6. $\frac{360^{\circ}}{6}=\frac{180^{\circ}}{3}=60^{\circ}$; this is because the center of the polygon is formed by the angle bisectors of the vertices of the regular polygon.
7. $\frac{s}{2}$
8. $\tan \left(60^{\circ}\right)=\frac{s / 2}{A B} \Rightarrow A B=\frac{s}{2 \cdot \tan \left(60^{\circ}\right)}$
9. Area $=\frac{1}{2}($ apothem $)($ perimeter $)$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \frac{s}{2 \cdot \tan \left(60^{\circ}\right)} \cdot(3 s) \\
& =\frac{3 \cdot s^{2}}{4 \cdot \tan \left(60^{\circ}\right)}
\end{aligned}
$$

10. $\frac{360}{8}=\frac{180}{4}=45$
11. $\frac{s}{2}$
12. $\tan \left(45^{\circ}\right)=\frac{\mathrm{s} / 2}{A B} \Rightarrow A B=\frac{\mathrm{s}}{2 \cdot \tan \left(45^{\circ}\right)}$
13. Area $=\frac{1}{2}($ apothem $)($ perimeter $)$

$$
\begin{align*}
& =\frac{1}{2} \cdot \frac{s}{2 \cdot \tan \left(45^{\circ}\right)} \cdot(4 s) \tag{4s}\\
& =\frac{4 \cdot s^{2}}{4 \cdot \tan \left(45^{\circ}\right)}
\end{align*}
$$

Students should notice that this simplifies to s^{2}, the area of a square with sides $=s$.
14. $\frac{360}{10}=\frac{180}{5}=36$
15. $\frac{s}{2}$
16. $\tan \left(36^{\circ}\right)=\frac{s / 2}{A B} \Rightarrow A B=\frac{s}{2 \cdot \tan \left(36^{\circ}\right)}$
17. Area $=\frac{1}{2}($ apothem $)($ perimeter $)$

$$
\begin{align*}
& =\frac{1}{2} \cdot \frac{s}{2 \cdot \tan \left(36^{\circ}\right)} . \tag{5s}\\
& =\frac{5 \cdot s^{2}}{4 \cdot \tan \left(36^{\circ}\right)}
\end{align*}
$$

18. $\frac{360}{2 n}=\frac{180}{n}$
19. $\frac{s}{2}$
20. $\tan \left(\frac{180^{\circ}}{n}\right)=\frac{s / 2}{A B} \Rightarrow A B=\frac{s}{2 \cdot \tan \left(\frac{180^{\circ}}{n}\right)}$
21. Area $=\frac{1}{2}($ apothem $)($ perimeter $)$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \frac{s}{2 \cdot \tan \left(\frac{180^{\circ}}{n}\right)} \cdot(n s) \\
& =\frac{n \cdot s^{2}}{4 \cdot \tan \left(\frac{180^{\circ}}{n}\right)}
\end{aligned}
$$

22. Area $=\frac{7 \cdot 2^{2}}{4 \cdot \tan \left(\frac{180^{\circ}}{7}\right)}=14.54 \mathrm{~cm}^{2}$
23. Area $=\frac{25 \cdot 9^{2}}{4 \cdot \tan \left(\frac{180^{\circ}}{25}\right)}=4007.38 \mathrm{~cm}^{2}$
24. Area $=\frac{12 \cdot 3^{2}}{4 \cdot \tan \left(\frac{180^{\circ}}{12}\right)}=100.77 \mathrm{in.}^{2}$
25. Area $=\frac{8 \cdot 12.5^{2}}{4 \cdot \tan \left(\frac{180^{\circ}}{8}\right)}=754.44$ in. 2
26. Area $=\frac{3 \cdot 90^{2}}{4 \cdot \tan \left(\frac{180^{\circ}}{3}\right)}=3,507.40 \mathrm{~cm}^{2}$
27. Area $=\frac{5 \cdot 921^{2}}{4 \cdot \tan \left(\frac{180^{\circ}}{5}\right)}=1,459,379.47 \mathrm{ft}^{2}$
28. Area $=\frac{7 \cdot 7^{2}}{4 \cdot \tan \left(\frac{180^{\circ}}{7}\right)}=178.06 \mathrm{~cm}^{2}$
