Polynomials—Factors, Roots, and Zeros

Student Activity

Name

Factors, Roots, and Zeros

the values of a, b, c, and d.

Open the TI-Nspire document Polynomials_Factors_Roots_and_Zeros.tns.

This activity examines the connections between the roots or zeros of a polynomial equation and the *x*-intercepts of the graph of the polynomial function. It also looks at how the graph of the function can help identify the factors of the equation.

Move to page 1.2.

Press ctrl) and ctrl (to
navigate through the lesson.

1. Using the sliders, set $y_1 = 1x + 1$ and $y_2 = 1x - 2$. Observe that the graph of $y_1 = 1x + 1$ appears to cross the x-axis at x = -1. When x = -1, $y_1 = 0$ because -1 + 1 = 0.

- a. Where does the graph of $y_2 = 1x 2$ appear to cross the x-axis?
- b. Write a simple equation to verify that this value of x is a zero of y_2 .
- c. When $y_1 = 1x + 1$ and $y_2 = 1x 2$, what is the function y_3 ?
- d. The graph of y_3 is a parabola. How many times does the graph of y_3 cross the x-axis?
- e. What are the zeros of y_3 ?
- Factor y_3 . f.

Class Polynomials -

Move the sliders on the next page to change

y 1	y 2	Zeros of <i>y</i> ₁ <i>y</i> ₂		y 3	Zeros of y ₃	Factors of y ₃
(<i>x</i> + 4)	(<i>x</i> + 3)					
				$2x^2 + 0x - 8$		
						(x-5)(-1x-2)
(3x + 3)			-4			
					-1 and 4	
						(2x+4)(3x-3)

g. Given the information below, use the sliders to fill in the rest of the table:

- h. Write a conjecture about the relationship between the zeros of the linear functions and the zeros of the quadratic function.
- i. How do the factors of the quadratic equation relate to the zeros of the function?

Move to page 2.2.

- 2. Use the sliders to make f1 = 1x + 4, f2 = 1x + 2, and f3 = x 1. Observe that the graphs of each appear to cross the *x*-axis at -4, -2, and 1, respectively.
 - a. Verify algebraically that each is a zero of each linear function.
 - b. When f1 = 1x + 4, f2 = 1x + 2, and f3 = x 1, what is f4?
 - c. How many times does f4 cross the x-axis and where?

- d. Show that the multiplication of the factors of *f*1, *f*2, and *f*3 equal *f*4.
- e. Try other slider values and make a conjecture about the relationship between the zeros of the linear equations and the zeros of the cubic function.
- 3. Use the sliders to make *f1* = *x* + 4, *f2* = *x* + 2, and *f3* = *x* + 2.
 a. How has the graph changed? The value -2 is called a double root.
 - b. Change f1 = 1x + 2. How has the graph changed?
- 4. Use the sliders to make f1 = 3x 3, f2 = x + 1, and f3 = x 2.
 - a. Observe the graph and identify the zeros. What is f4?
 - b. Now change the sliders to make f1 = x 1, f2 = x + 1, and f3 = x 2. Observe the graph. What are the zeros? What is f4?
 - c. Identify similarities and differences between the sets of equations in 4a and 4b.