
Making Piecewise Functions Continuous and Differentiable  
by Dave Slomer 

 
Piecewise-defined functions are applied in areas such as Computer Assisted Drawing 
(CAD). Many piecewise functions in textbooks are neither continuous nor 
differentiable—the graph is likely to be “broken” (as in figure 1a) or “pointy” (as in 
figure 3a). While this may sometimes be desirable, careful analysis can enable us to 
slightly modify the function, making it become both continuous and differentiable, if 
need be. To do so requires precise, analytic definitions, not vague words such as 
“broken” and “pointy”. 
 
f is continuous at x = a if (and only if) )()(lim afxf

ax
=

→
. [This will happen if the left- and right-

hand limits at x = a equal each other and equal f(a). (See figures 2 {not continuous} and 3b {continuous}.)] 
 
f is differentiable at x = a if (and only if) )(af ′ exists. [This means that the left- and right-hand 

derivatives at x = a must exist and equal each other. (See figures 5c {not differentiable} and 6e 
{differentiable}.) Their common value will be )(af ′ .] 
 
A very important theorem about the relationship between continuity and differentiability 
says, “If f is differentiable at x = a, then it is continuous at x = a.” [ This can be shortened 
to “Differentiability implies continuity ” or reworded as “Differentiability is a sufficient condition for 
continuity” or “Continuity is a necessary condition for differentiability.” An important consequence of it 
[called its contrapositive] is, “If f is not continuous at x = a, then f is not differentiable at x = a.”] Note that the 
converse, “If f is continuous at x = a, then f is differentiable at x = a” is not necessarily 
true, as Example 1 will now convince you. 
 

Example 1: As figure 1a shows, the 

piecewise function 
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is not continuous at x = 2. Making this 
function continuous is not so hard. Making 
it differentiable isn’t much harder. We’ll do 
both, one at a time, continuity first. 

Fig. 1a  
To enlist your TI-89’s help, use the when 
command, whose basic syntax is 
when(condition, function defintion for 
that condition, function defintion 
elsewhere). For the piecewise function in 
this example, give the command shown in 
figure 1b.  
 Fig. 1b  
(Note that you do not type the word else in the when command that defines y1(x). The ’89 displays else 
rather than displaying x≥2 [or making you type it], which would be redundant since the first line already 
says x<2. A better word might have been otherwise or elsewhere, but space is limited.) 



 
In figure 2, we see the analytic reason for 
the discontinuity: the limit as x approaches 
2 does not exist, because the left- and right- 
hand limits are not equal, equaling 3 and 
sin(2), respectively. The definition of 
continuity, then, proves that y1 is not 
continuous at x = 2. 
 

Fig. 2  

 
To make y1 continuous at x = 2, we could raise the sine graph or lower the line. If we 
decide to raise the sine, it would need to be raised by the exact amount that the left and 
right-hand limits differ by, 3-sin(2). To do this, we modify the definition of y1 via a 

vertical shift, like so: 
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graph is shown in figure 3a, while confirmation that the limit exists is shown in figure 3b. 

Fig. 3a   Fig. 3b  
[It is not necessary to look at left- and right-hand limits if “the” limit exists, though it might be reassuring!] 
 

 
Exercise 1: By applying a vertical shift to one piece or the other, make the function 
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(including symbolic) evidence that you succeeded. Don’t worry about making it 
differentiable. Is it differentiable at x = 0? Why? 
 
 
Example 2: We suspect that the modified function of 
Example 1 is not differentiable since it does not look 
smooth at the point (2,3) in figure 3a. And, it is not 
differentiable at x = 2, as figure 4 shows. No shift is 
going to fix the lack of differentiability, since the 
problem is one of slope—the left-hand derivative at 
x = 2 is the slope of the line, 2, while the right-hand 
derivative is different, and equals cos(2). (Why?) Fig. 4  



If the first line in figure 5a, the line that is tangent to 
the sine piece of the function at x = 2 is made to be 
the left piece of the function. Since (2,sin(2)) is a 
point on the curve [Why? See figure 1b] and since the 
right-hand derivative is cos(2) [Why? See figure 4], we 

make 
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Fig. 5a  

 
Figure 5a shows that y1'(2) now exists, equaling 
cos(2). All looks well, too, as shown in figure 5b. 
How do you know that y1 is also continuous at x = 
2? 

Fig. 5b  
 

Exercise 2: Choose m and b to make the function 
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differentiable at x = 0. Let Example 1 guide you. Supply written analytic (including 
symbolic) evidence that you succeeded. How would you convince someone that the 
function is continuous at x = 0? 
 

Exercise 3: Choose m and b to make the function 
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differentiable at x = 2. Supply written analytic (including symbolic) evidence that you 
succeeded. Why do you not have to use limits to prove that the function is continuous at x 
= 2? (Review the definitions and theorem at the beginning of this activity.) 
 
 
Example 2: But what if neither piece was linear? What if the left piece were a sine and 

the right a parabola? In particular, what if 






 >=

otherwise  )sin(

0 if      ,
)(

2

1
x

xx
xy ? What might we 

do if we wanted to make y1 differentiable at x = 0? 
 
 
Define y1 as in figure 5a, observe that the 
derivative does not exist at 0, and then 
graph it (see figure 5b). 
 

Fig. 5a  



 
In figure 5b, y1 may look differentiable 
(smooth), but figure 5a shows that it’s not 
smooth enough. 
 
 

Fig. 5b  
 
Figure 5c tells more precisely why the 
derivative doesn’t exist at x = 0: the left-
hand derivative is 1 while the right-hand 
derivative is 0. 

Fig. 5c  
 
In figure 5d, zooming in just a little (with 
the Axes OFF) makes the function look 
most definitely un-smooth at x = 0. [It does 
not matter what it looks like—figures 5a and 5c say 
it all—but a look at a graph in the right window can 
be reassuring—a “second opinion” if you will]. 

Fig. 5d  
 
So, what do we do in order to let the left piece be a sine, the right a parabola, and make 
the piecewise function differentiable at x = 0? As with continuity, we modify one piece—
we arbitrarily choose the sine. (Before proceeding, press �g to Clear variables a-z) 
 
It’s not clear whether moving and 
distorting the sine horizontally and 
vertically will be necessary, but, just in 
case, in figure 6a, we define the left half of 
y1 to be the general sine function, leaving 
the parabola alone. (Surely it would not be 
necessary to modify both.) 

Fig. 6a  
 
In figure 6b, we compute the “continuity” 
limits. We see that, to have a chance at 
continuity, a+b· sin(d) must equal 0 
(Why?). (And why “have a chance”?) 
 

Fig. 6b  



 
In figure 6c, we compute the left- and 
right-hand derivatives and see that, for 
differentiability, b· c· cos(d) must be 0. 
(Why?) Since b and c may not be 0 
(Why?), cos(d) must be zero. This happens, 
among other places, at d=π/2. (Why there? 
Name another place or two.) Fig. 6c  
 
In figure 6d, we store π/2 into d and revisit 
the “continuity” limits of figure 6b. We see 
that a+b must equal 0 to get continuity 
(Why? And where did sin(d) go?). This does not 
tell us what either should be, but it does tell 
us that any nonzero value of b will  make 
y1 continuous at x = 0 if  a = -b. (Why?) Fig. 6d  
 
In figure 6e, we decide, arbitrarily, to store 
1 into b and, hence, -1 into a, and revisit 
the “differentiability” limits of figure 6c. 
What a nice surprise! No matter what c is, 
we’ll have differentiability! (Why?) [You 
might want to try a different value of b and see if 
the same thing happens. Must it? Why?] 

Fig. 6e  
 
In figure 6f, we arbitrarily make c = 1 and 
note that the function is now both 
differentiable and continuous. (Why is it 
not necessary to compute the “continuity” 
limit? Why do we not need to find the left- 
and right-hand derivatives?) 

Fig. 6f  
 
In figure 6g, a look at a simplified version 
of the sine piece shows something 
interesting: Where did the sine go? We 
store this simplified version into y1 [not that 
we must] and look at the graph in figure 6h. 

Fig. 6g  



 
In figure 6h, a graph of this new function 
does seem to show smoothness at (0,0). But 
no matter what it looks like, it is the 
derivative in figure 6f that makes it 
differentiable (and therefore continuous—
Why?). 

Fig. 6h  
 
 

Exercise 3: Is the function 
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graph of its derivative as part of your argument. Is y1 discontinuous at any x? Is its 
derivative? Why?  
 

 

Exercise 4: The function 
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differentiable at x = ± 2. Why? Try to make it continuous and differentiable for all x by 
leaving the top line of the definition intact while changing the “otherwise” part. Did you 
succeed with either attempt? If you can’t make it differentiable for all x, can you add a 
third line to at least make it continuous for all x? Explain. 
 
 
Press �g to Clear variables a-z. 

Exercise 5: Find values for b and d so that 
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differentiable at x = 0. Why do you suppose the vertical shift (a) was omitted instead of 
the horizontal? Do you think it matters whether the horizontal distortion (c) is omitted in 
favor of the vertical (b) or whether c is included while b is omitted? Explore. 
 
 
Press �g to Clear variables a-z. 
 
Exercise 6: Piece together an exponential function and a square root function at x = 0 so 
that the resulting function will be defined and differentiable (and therefore continuous) 
for all x. 
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