You're Probably Right, It's Wrong

## Objectives

- To use technology to find experimental and theoretical probabilities
- To use technology to find measures of central tendencies
- To use technology to explore simulation
- To use technology to generate random numbers
- To use technology to plot a histogram
- To use technology to plot a pie chart
- To use technology to plot a pictograph
- To use technology to plot a bar graph


## Materials

## Introduction

Nathan had a choice between studying for a mathematics test and going to the movies with a friend. He knew going to the movies was the wrong choice, but he decided to go anyway. When the math test was handed out the next day, he knew he should have studied. After seeing the test, it was clear that he was not prepared to take it. Nathan was somewhat relieved when he saw that the test had 20 multiple-choice questions. He knew that if he guessed the answers, he would have a $25 \%$ chance of getting the correct answer for each question, since each question had four choices. Nathan remembered that his $\mathrm{TI}-73$ had a random number generator. He used this feature to help him guess the answers on the test. Nathan is now nervous about the results of the math test. If he fails this test, he will be grounded for a month. Nathan thinks that he did not pass the test. Is he right?

You will find the experimental probability to determine the likelihood that Nathan has passed this test. You will perform a simulation to determine the experimental probability. Probability is a number between 0 and 1 that measures the likelihood that an event will or will not occur. If the probability is 0 , then the probability that the event will occur is impossible. If the probability is 1 , then the probability that the event will occur is certain. Experimental probability is determined by performing experiments and observing outcomes to determine what might happen in a given situation. A simulation is a method for finding experimental probability using a device to model the event.

You will also find the theoretical probability of Nathan passing the test. If $P(E)$ represents the probability of the event occurring, $m$ represents successful outcomes, and $n$ represents possible equally likely outcomes (both successful and unsuccessful), then
$P(E)=\frac{m}{n}$ is the theoretical probability of the event occurring.

## Problem

Was Nathan's idea of generating random numbers to answer the questions on the test a good idea? Should Nathan prepare to clean his room since he might be spending a good deal of time in there?

## Collecting the data - Part I

Use the TI-73's random number generator to perform a simulation to guess answers on the test. The choices of answers are $\boldsymbol{A}, \boldsymbol{B}, \mathbf{C}$, or $\boldsymbol{D}$. An $\boldsymbol{A}$ will be represented by a $\mathbf{1}$, a $\boldsymbol{B}$ by a $\mathbf{2}$, a $\boldsymbol{C}$ by a 3, and a $\boldsymbol{D}$ by a 4 . The correct answers for the test are listed below along with the corresponding number for the letter.

1. $\mathrm{C}-3$
2. C - 3
3. B - 2
4. C - 3
5. B - 2
6. $\mathrm{A}-1$
7. $\mathrm{A}-1$
8. $D-4$
9. $\mathrm{C}-3$
10. $B-2$
11. $\mathrm{A}-1$
12. $D-4$
13. $\mathrm{D}-4$
14. $D-4$
15. D - 4
16. C - 3
17. $D-4$
18. $C-3$
19. D - 4
20. A - 1

## Setting up the Tl-73

Before starting your data collection, make sure that the TI-73 has the STAT PLOTS turned OFF, Y= functions turned OFF or cleared, the MODE and FORMAT set to their defaults, and the lists cleared. See the Appendix for a detailed description of the general setup steps.

## Entering the data in the TI-73

1. Press $\boxed{\text { LIST }}$ and enter the data for the answers to the test in L1. When finished, press [2nd [QUIT] to exit the list editor.


The following steps will generate a list of random numbers between 1 and 4 and store them in L2.
2. Press MATH.

3. Press $\square \square$ to move the cursor to the PRB menu.

4. Select 2:randInt( by pressing 2.

5. Press $1 \square \mathbf{4} \mathbf{4 0} \square$ STO 2nd [STAT] 2:L2.

6. Press ENTER to generate the list of numbers and store them in L2.


Compare your answers with the correct answers for the test. Using the equal sign, compare the number in $\mathbf{L 1}$ to the corresponding number in $\mathbf{L 2}$. If the two values are equal, the TI-73 returns a 1, which indicates that the statement is true. If the values are not equal, the TI-73 returns a 0 , which indicates that the statement is false. Use the following steps to perform this operation. Since this simulation will be repeated, you will save the formula that performs the operation.
7. Press $\boxed{L I S T}$. Press $\square \square \Delta$ to move the cursor to highlight L3.

| L1 | Lz | 4 | 3 |
| :---: | :---: | :---: | :---: |
| 3 | 4 |  |  |
| $\frac{2}{2}$ | 2 |  |  |
| 4 | 1 |  |  |
| 4 | 1 |  |  |
| 1 | 1 |  |  |
| L3 $=$ |  |  |  |

8．Press 2nd［TEXT］．

9．Press $]^{\square} ⿴ 囗 十 \square$ ENTER to select the quotation mark（＂）．

10．Press $\square$ to move the cursor to Done．

11．Press ENTER to exit the Text editor and paste the quotation mark in L3．

12．Press［2nd［sTAT］．Select 1：L1 by pressing 1 or ENTER．


| L1 | L2 | $\underline{1}$ | 3 |
| :---: | :---: | :---: | :---: |
| 3 | 4 |  |  |
| 3 | $\stackrel{2}{2}$ |  |  |
| 4 | 1 |  |  |
| 3 | $\frac{1}{3}$ |  |  |
| 1 | 1 |  |  |
| Lз＝＂L1 |  |  |  |

13．Press 2nd［TEXT］．Press $\Delta \Delta$ ENTER to select the equal sign（＝）．

14. Press ENTER to exit the Text editor and paste the equal sign next to $\mathbf{L 1}$.

15. Press 2nd [STAT]. Select 2:L2 by pressing 2.

16. Press 2nd [TEXT] $]_{\square} \square$ ENTER to select the quotation mark ("). Press $\square \square$ ENTER to exit the Text editor and paste the quotation mark next to L2.

| L1 | Lz | 4 | 3 |
| :---: | :---: | :---: | :---: |
| 3 | 4 |  |  |
| E | $\underline{2}$ |  |  |
| 4 | 1 |  |  |
| 4 | 1 |  |  |
| 1 | $\stackrel{1}{1}$ |  |  |
| Lз = " 1 = $\mathrm{L}^{\prime \prime}$ |  |  |  |

17. Press ENTER to see the comparison with the correct answers.

Note: The symbol next to $\mathbf{L 3}$ indicates a formula has been stored in $\mathbf{L 3}$.


To find the number of correct answers in the simulation, calculate the sum of the numbers in L3.
18. Press 2nd [QUIT] to exit the List editor.

19. Press $2 \mathrm{Znd}[\mathrm{STAT}] \square \square$ to move the cursor to the MATH menu.

| ```LS OFS WFTH CALC 1Bmins 2: max 3: meanc 4: medians 5: mode? 6:st.dDev( 7: sum?``` |
| :---: |

20. Select 7:sum( by pressing 7 .
21. Press [2nd [STAT] 3:L3 $\square$.
22. Press ENTER to see how many were correct. Record the data for this simulation in the table on the Data Collection and Analysis page.
23. Run the simulation again. Press $\Delta \square \Delta \square$ until randInt $(\mathbf{1 , 4 , 2 0}) \rightarrow \mathrm{L} \mathbf{2}$ is highlighted.
24. Press ENTER to copy the randInt( command, the press ENTER to run the simulation again.
Note: You can view the results of the new simulation by pressing $\lfloor I S T$. When finished, press [2nd [Quit] to exit the List editor.
25. To calculate how many are correct, press $\Delta \Delta \Delta$ until sum(L3) is highlighted.

randInt(1,4,20) $\begin{array}{lllllll}4 & 2 & 2 & 2 & 1 & 1 & 3\end{array}$ sum(Lz)

26. Press ENTER to copy the sum(L3) command, then press EENTER to calculate the number correct. Record the data for this simulation in the table on the Data Collection and Analysis page.

27. Run the simulation 40 to 50 more times (Steps 23-26). Record each of the trials on the Data Collection and Analysis page.

## Setting up the window for the Histogram

1. Press WINDOW to set up the proper scale for the axes.
2. Set the $\mathbf{X m i n}$ value by identifying the minimum number of correct answers from the Data Collection and Analysis page. Choose a number that is less than the
 minimum.
3. Set the Xmax value by identifying the maximum number of correct answers from the Data Collection and Analysis page. Choose a number that is greater than the maximum. Do Not Change the $\Delta \mathbf{X}$ Value. Set the Xscl to 1.
4. Set the $Y m i n$ value by identifying the minimum in the frequency column from the Data Collection and Analysis page. Choose a number that is less than the minimum.
5. Set the Ymax value by identifying the maximum value in the frequency column from the Data Collection and Analysis page. Choose a number that is greater than the maximum. Set the Yscl to 1.

## Graphing the data: Plotting a histogram

Use the data in the table on the Data Collection and Analysis page, Part I, to plot a histogram.

1. Press IST.

| L1 | L2 | LS | 43 |
| :---: | :---: | :---: | :---: |
| 3 | 3 | 1 |  |
| $\frac{8}{4}$ | 4 | 0 |  |
| 4 | 1 | \% |  |
| $\frac{4}{3}$ | $\frac{1}{4}$ | 0 |  |
| 1 | 3 | 0 |  |
| L3(1) $=1$ |  |  |  |

2. Enter the number of correct answers in L4.
3. Enter the frequencies in L5.

| L4 | L5 | \|LE | 6 |
| :---: | :---: | :---: | :---: |
| 0 | 0 | Hmam |  |
| 1 | 0 |  |  |
| $\frac{2}{3}$ | 4 |  |  |
| 4 | 10 |  |  |
| 5 | 旦 |  |  |
| L6it |  |  |  |

4. Press 2nd [PLOT]. Select 1:Plot1 by pressing 1 or ENTER.

5. Set up the plot as shown by pressing ENTER $\square \square \square \square \square \square$ ENTER $\square$ 2nd [STAT] 4:L4 $\square$ 2nd [STAT] 5:L5.

6. Press TRACE to see the plot. Use $\square$ and $\square$ to see the frequencies.


Answer Part I questions 1-9 on the Data Collection and Analysis page.

## Collecting the data - Part //

Nathan noticed that the correct answers on the test contained more C's and D's than A's and B's. He decided to run a simulation on his calculator to see if the calculator would produce a distribution of A - D's similar to that on the test. Nathan decided to run three practice tests for his simulation and look at the number of A's, B's, C's, and D's.

Use the $\mathrm{TI}-73$ and the random number generator to simulate the answers on three practice tests. You will plot a pie graph, a pictograph, and a bar graph to determine the distribution of letters on the test.

## Setting up the Tl-73

Before starting your data collection, make sure that the TI-73 has the STAT PLOTS turned OFF, Y= functions turned OFF or cleared, the MODE and FORMAT set to
their defaults, and the lists cleared. See the Appendix for a detailed description of the general setup steps.

1. Press MATH.

2. Press $\square$ to move the cursor to the PRB menu.

3. Select 2:randInt( by pressing 2.
reandrac
4. Press $\mathbf{1} \mathbf{4} \mathbf{2 0}$ STO* [ [STAT] 1:L1. Press ENTER to generate a list of numbers that represent the answers to a practice test 1.
5. Sort the list. Press [2nd [STAT] to move the cursor to the OPS menu.

6. Select $1:$ SortA( by pressing 1 or ENTER.

7. Press 2nd [stat] 1:L1 $\square$ ENTER.

8. Press $\left\lfloor I S T\right.$. Count the number of $A^{\prime} s, B^{\prime} s$, C's, and D's. (Remember that $A=1, B=2$, $C=3$, and $D=4$.)


Enter the data in the table for Part II on the Data Collection and Analysis page.
9. Press [2nd [QUIT] to return to the Home screen. Press [2nd [ENTRY] twice until you get the randint $(\mathbf{1 , 4 , 2 0}) \rightarrow \mathbf{L}$ statement on the screen.

10. Press ENTER to generate a second list of numbers that represent the answers to a practice test 2.
11. Press 2nd [ENTRY] twice until you get the SortA(L1) statement.
12. Press ENTER to sort the data. Repeat Step 8 and record your results in the table on the Data Collection and Analysis page.

13. Repeat Steps 9-12 to generate the answers to a practice test 3. Record your results in the table on the Data Collection and Analysis page.

## Entering the data in the TI-73

1. Press IST and press 0 to place the cursor at the top of the $7^{\text {th }}$ list.

2. Name the list ANSWR by pressing 2nd [TEXT], moving the cursor to each letter of the name A N S W R, and pressing ENTER.
3. Move the cursor to highlight DONE.

4. Press ENTER to exit the Text editor.
5. Press ENTER to paste ANSWR at the top of the list.

Create a category list (a list that contains text) by having the first element entered in quotation marks.

6. Press to move the cursor to the first element.

7. Enter "A". Press 2nd [TEXT]. Move the cursor to each character of the entry "A" and press ENTER.
8. Move the cursor to highlight DONE. Press ENTER to exit the Text editor.
9. Press ENTER to paste $\mathbf{A}$ in the list.

Note: A c should appear at the top of the list indicating that this is a category list.
10. Enter the letters B, C, and D in the list by repeating Steps 7-9. You DO NOT have to enclose the remaining letters in quotation marks.
11. Press $\square$ to move the cursor to the top of the $8^{\text {th }}$ list. Repeat Steps 1-5 using the list name,TEST1.

12. Repeat Step 11 for the list names TEST2 ( $9^{\text {th }}$ list) and TEST3 ( $10^{\text {th }}$ list.)

13. Enter the data from the table in Part II of the Data Collection and Analysis page in the appropriate lists.

| TEST1 | TESTE | TESTS 10 |
| :---: | :---: | :---: |
| $\begin{aligned} & 9 \\ & \underset{3}{2} \\ & \hline \end{aligned}$ | 6 4 6 4 |  |
| TEST3C5 $=$ |  |  |

## Graphing the data: Setting up a pie chart

Use the data in the table on the Data Collection and Analysis page Part II to plot a pie chart.

1. To set up the plot, press [2nd [PLOT]. Select Plot1 by pressing 1 or ENTER.

Press ENTER $\square \square \square \square$ ENTER $\square$ 2nd [STAT] 7:ANSWR 2nd [STAT] 8:TEST1 $\square \square$ ENTER.

Note: Your lists, ANSWR and TEST1 may not be in positions 7 and 8 on the TI-73. Use $\square$ and $\triangle$ to move the cursor to the desired list and press ENTER to select that list.
2. Press TRACE to see the pie chart.

3. Use $\square$ and $\square$ to see the number of items in each section of the graph. The numbers displayed in the left hand corner represent the percent (\%) for each letter.
4. To view the pie chart for the data in TEST2, press 2nd [PLOT]. Select Plot1 by pressing 1 or ENTER. Press $\square_{\square} \square \square \square \square \square$

5. Repeat Steps 2-3 using the data from TEST2.
6. Repeat Steps 4-5 using the data from TEST3.

Answer Part II question 1 on the Data Collection and Analysis page.

## Graphing the data: Setting up a pictograph

1. Press $2 n d[$ [PLOT]. Select Plot1 by pressing 1 or ENTER. Press ENTER $\square \square \square$ ENTER $\square$ 2nd [STAT] 7:ANSWR 2nd [STAT] 8:TEST1 $\quad 2 \square$ $\square$ ENTER © ENTER.
Note: Your lists, ANSWR and TEST1, may not be in positions 7 and 8 on the $T 1-73$. Use $\square$ and $\triangle$ to move the cursor to the desired list and press ENTER to select that list.
2. Press TRACE $\square$ to see the pictograph.

3. Use $\square$ and $\square$ to see the number of items represented by each row of data.
4. To view the pictographs for the data in TEST2, press 2nd [PLOT]. Select Plot1 by pressing 1 or ENTER. Press $\nabla^{\square} \square \square \square$ $\square 2$.

5. Repeat Steps 2-3 using the data from TEST2.
6. Repeat Steps 4-5 using the data from TEST3.

Answer Pat II question 2 on the Data Collection and Analysis page.

## Graphing the data: Setting up a bar graph

1. To set up the plot, press 2nd [pLOT]. Select Plot1 by pressing 1 or ENTER. Press ENTER $\square$ $\square \square \square$ ENTER $\square$ 2nd [STAT] 7:ANSWR $\square$ 2nd [STAT] 8:TEST1 9:TEST2 0:TEST3 $\square$ ENTER $\square \square \square \square$ ENTER.

Note: Your lists, ANSWR, TEST1, TEST2, and TEST3,
 may not be in positions $7,8,9$, and 0 (10) on the TI-73. Use $\square$ and $\triangle$ to move the cursor to the desired list and press ENTER to select that list.
2. Press TRACE to see the bar graph.

3. Use $\square$ and $\square$ to see the number of items represented by each bar of data.

Answer Part II questions 3 and 4 on the Data Collection and Analysis page.

## Data Collection and Analysis

Name $\qquad$
Date $\qquad$

## Activity 9: You're Probably Right, It's Wrong

## Collecting the data - Part I

Record your data in the table below.

| Number of correct answers | Tally marks | Frequency |
| :---: | :---: | :---: |
| 0 |  |  |
| 1 |  |  |
| 2 |  |  |
| 3 |  |  |
| 4 |  |  |
| 5 |  |  |
| 6 |  |  |
| 7 |  |  |
| 8 |  |  |
| 9 |  |  |
| 10 |  |  |
| 11 |  |  |
| 12 |  |  |
| 13 |  |  |

## Analyzing the data - Part I

1. Find the mean for the number of correct answers.
(Press 2nd [QuIT] CLEAR 2nd [STAT] $\square \square$ 3:mean( 2nd [STAT] 4:L4 $\square$ 2nd [STAT] 5:L5 $\square$ EENTER)
2. Find the median for the number of correct answers. $\qquad$
(Press 2nd [stat] $\square \square$ 4:median( 2nd [sTAT] 4:L4 $\square$ 2nd [STAT] 5:Ls $\square$ ENTER)
3. Find the mode for the number of correct answers. $\qquad$
(Press 2nd [stat] $\square \square$ 5:mode( 2nd [sTAT] 4:L4 $\square$ 2nd [STAT] 5:L5 $\square$ ENTER)
4. Which measure of central tendency do you think gives a better indication of what might happen if you use this method to answer the questions on a multiple-choice test? Explain your answer.
$\qquad$
$\qquad$
5. Using your answer from number 4, find the experimental probability.
$\qquad$
6. Find the theoretical probability. $\qquad$
7. How do your answers in number 5 and number 6 compare?
$\qquad$
$\qquad$
8. Do you think it is a good idea to use a random number generator to answer the multiple-choice questions on a test? Explain.
$\qquad$
$\qquad$
9. Write a random number statement to answer 20 True / False questions. randInt( )

## Collecting the data - Part I/

| Answer | Test 1 <br> Amount | Test 2 <br> Amount | Test 3 <br> Amount |
| :---: | :---: | :---: | :---: |
| A |  |  |  |
| B |  |  |  |
| C |  |  |  |
| D |  |  |  |

## Analyzing the data - Part /I

1. Compare the percentage of A's from the pie charts. Are the percentages the same or different for each test? Would you expect them to be the same or different? Explain.
$\qquad$
$\qquad$
$\qquad$
2. Compare the number of B's for each practice test using the pictograph. Are the number of B's the same or different for each test? Do you think the pictograph is a good way of comparing the data? Explain.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
3. Compare the number of D's for each practice test using the bar graph. Are the number of D's the same or different for each test? Explain.
$\qquad$
$\qquad$
$\qquad$
4. Which graph, pie chart, pictograph, or bar graph is best for comparing the number of A's, B's, C's, and D's in each test? Explain.
$\qquad$
$\qquad$
$\qquad$

## Teacher Notes

## Activity 9

## You're Probably Right, It's Wrong

## Objectives

- To use technology to find experimental and theoretical probabilities
- To use technology to find measures of central tendencies
- To use technology to explore simulation
- To use technology to generate random numbers
- To use technology to plot a histogram
- To use technology to plot a pie chart
- To use technology to plot a pictograph
- To use technology to plot a bar graph


## Materials

- TI-73 graphing device


## Preparation - Part I

- Make sure students run enough trials to produce at least 40 to 50 data items.
- Find the mean, median, and mode by using the [2nd [STAT] MATH menu on the TI-73. Check students' results for finding the mean.
- For a histogram, discuss the values at the bottom of the screen for the plot (that is, the values of $n, \min$, and $\max$ ).


## Preparation - Part //

- After the activity, to remove the list that has an equation stored in it, press 2nd [STAT] $\square$ 3:ClrList 2nd [STAT] 3:L3 ENTER.


## Answers to Data Collection and Analysis questions

## Collecting the data - Part I

Sample data:

| Number of correct answers | Tally marks | Frequency |
| :---: | :---: | :---: |
| 0 | - | 0 |
| 1 | - | 0 |
| 2 | IIII | 4 |
| 3 | III | 3 |
| 4 | HIII HIIII | 10 |
| 5 | HIII III | 8 |
| 6 | HIII I | 6 |
| 7 | HIII | 5 |
| 8 | - | 0 |
| 9 | // | 2 |
| 10 | // | 2 |
| 11 |  |  |
| 12 |  |  |
| 13 |  |  |

## Analyzing the data - Part I

1. Find the mean for the number of correct answers.

Per the sample data, mean $=5.15$
2. Find the median for the number of correct answers.

Per the sample data, median $=5$
3. Find the mode for the number of correct answers.

Per the sample data, mode $=4$
4. Which measure of central tendency do you think gives a better indication of what might happen if you use this method to answer the questions on a multiple-choice test? Explain your answer.

The median or mean gives a better indication of the results of using this method to answer questions on a multiple-choice test. Answers may vary.
5. Using your answer from number 4, find the experimental probability.

5 / 20 or .25
6. Find the theoretical probability.

5 / 20 or . 25
7. How do your answers in number 5 and number 6 compare?

They are the same. Answers may vary.
8. Do you think it is a good idea to use a random number generator to answer multiple-choice questions on a test? Explain.

No. The TI-73 simulates the theoretical probability, which means that the score will most likely be around $25 \%$.
9. Write a random number statement to answer 20 True/ False questions. randInt(1,2,20)

## Collecting the data - Part //

| Answer | Test 1 <br> Amount | Test 2 <br> Amount | Test 3 <br> Amount |
| :---: | :---: | :---: | :---: |
| A | 9 | 6 | 2 |
| B | 2 | 4 | 7 |
| C | 6 | 6 | 5 |
| D | 3 | 4 | 6 |

## Analyzing the data - Part /I

1. Compare the percentage of A's from the pie charts. Are the percentages the same or different for each test? Would you expect them to be the same or different? Explain.

The percentages are different. You would expect the percentages to be approximately the same. Since each answer has an equally likely chance of occurring, you would expect $25 \%$ of the answers to be A for each trial.
2. Compare the number of B's for each practice test using the pictograph. Are the number of B's the same or different for each test? Do you think the pictograph is a good way of comparing the data? Explain.

The number of B's is different. Answers will vary.
3. Compare the number of D's for each practice test using the bar graph. Are the number of D's the same or different for each test? Explain.

The number of D's is different. Answers will vary.
4. Which graph on the TI-73, pie chart, pictograph, or bar graph, is best for comparing the number of A's, B's, C's, and D's in each test? Explain.
The bar graph is the best graph for comparison because it is the only one on the TI-73 that allows you to clearly see the results of all three tests, side-byside.

