Maclaurin Polynomials

Time required
ID: 10129
45 minutes

Activity Overview

In this activity, students will use TI-Nspire technology to explore Maclaurin polynomials. They will develop polynomials that approximate very special functions.

Topic: Maclaurin Polynomials

- Compute the Maclaurin series for $\sin (x), \cos (x), f(x)=e^{x}$, and $f(x)=\frac{1}{1-x}$.

Teacher Preparation and Notes

- This investigation offers opportunities for students to begin their studies of power series approximations, deriving Maclaurin and Taylor series expansions for common functions.
- Students will use TI-Nspire technology to explore the Maclaurin polynomials. They produce polynomials that approximate $\sin (x), \cos (x)$, and e^{x}. The Maclaurin polynomial will approximate a function over a small, specific interval.
- Students should already be familiar with a Taylor polynomial, that is:
$P_{n}(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\ldots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}$
- Notes for using the TI-Nspire ${ }^{\text {TM }}$ Navigator ${ }^{\text {TM }}$ System are included throughout the activity. The use of the Navigator System is not necessary for completion of this activity.
- To download the student and solution TI-Nspire documents (.tns files) and student worksheet, go to education.ti.com/exchange and enter "10129" in the keyword search box.

Associated Materials

- MclaurinPolynomials_Student.doc
- MclaurinPolynomials.tns
- MclaurinPolynomials_Soln.tns

Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the keyword search box.

- Taylor Polynomials (TI-84 Plus family) - 4375
- Taylor Polynomial Examples (TI-Nspire technology) - 16118
- Mr. Taylor, I Presume? (TI-Nspire technology) - 10096

Functions that are continuous and differentiable at a center can be approximated by polynomials. One such way of doing this is to generate a Maclaurin polynomial for a function.
An approximating polynomial is to be expanded about the center c which is in the domain of a function f. If this c has the same value in a polynomial P and function f then $P(c)=f(c)$. Graphically, $P(c)=f(c)$ means that the graph of P passes through the point $(c, f(c)$).

A Maclaurin polynomial is a polynomial that is based upon a function's derivatives at $c=0$. Specifically, the nth Maclaurin polynomial is defined as

$$
\begin{aligned}
& \quad P_{n}(x)=\frac{f(0)}{0!} x^{0}+\frac{f^{\prime}(0)}{1!} x^{1}+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots+\frac{f^{(n)}(0)}{n!} x^{n} \\
& P_{n}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots+\frac{f^{(n)}(0)}{n!} x^{n}
\end{aligned}
$$

Problem 1 - Maclaurin polynomial for $f(x)=\sin (x)$

In generating the third degree Maclaurin polynomial for $f(x)=\sin (x)$, we compute (Have students compute and fill the missing answers.)

$$
\begin{array}{ll}
P_{3}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime \prime}(0)}{2!}(x)^{2}+\frac{f^{\prime \prime \prime}(0)}{3!}(x)^{3} \\
f(0)=\underline{0} & f^{\prime \prime}(0)=\underline{0} \\
f^{\prime}(0)=\underline{1} & f^{\prime \prime \prime}(0)=\underline{-1}
\end{array}
$$

Students can use CAS technology in the Calculator application to compute the derivative of $\sin (x)$ at a point by inserting a Calculator page (숭ㅇ $>$ Calculator) and pressing menu > Calculus > Derivative at a Point.
If CAS technology is not available, students can compute the derivative by hand and substitute the values into the Maclaurin polynomial. This results in

$$
\begin{gathered}
P_{3}(x)=0+(1) x+(0) x^{2}-\frac{(1)}{3!} x^{3} \\
P_{3}(x)=x-\frac{1}{6} x^{3}
\end{gathered}
$$

Have students study the graphs of $f(x)$ and $\mathrm{P}_{n}(x)$ on page 1.6. It is important to point to students that the polynomial begins its approximation from ($0, f(0)$). Students can change the order of the Maclaurin polynomial by clicking on the order arrows.

Q: What do you notice when the degree is 1 and 2 . Why?
A: Their graphs are the same because the polynomials P_{1} and P_{2} are equal.
Q: What do you notice when the degree is 3 and 4 . Why?
A: Their graphs are the same because the polynomials P_{3} and P_{4} are equal.

TI-Nspire Navigator Opportunity: Live Presenter

See Note 1 at the end of this lesson.

Problem 2 - Maclaurin polynomial for $\boldsymbol{f}(\boldsymbol{x})=\mathrm{e}^{\boldsymbol{x}}$

1. Write $P_{1}(x), P_{2}(x)$, and $P_{3}(x)$ for $f(x)=\mathrm{e}^{x}$

$$
\begin{aligned}
& P_{1}(x)=1+x \\
& P_{2}(x)=1+x+\frac{x^{2}}{2!} \\
& P_{3}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}
\end{aligned}
$$

2. Graph $f(x), P_{1}(x), P_{2}(x)$, and $P_{3}(x)$

What do you notice?

All the approximations of e^{x} and the function $f(x)$ all have the value 1 at $x=0$.

TI-Nspire Navigator Opportunity: Live Presenter

See Note 2 at the end of this lesson.

Problem 3 - Maclaurin polynomial for $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{\operatorname { c o s }}(\boldsymbol{x})$

1. Find $P_{8}(x)$ for $f(x)=\cos (x)$

$$
P_{8}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}
$$

2. What do you notice about the value of each derivative after 0 has been substituted?

The cosine values are either 1 or -1 and the sine values are 0 .
3. What do you notice about the approximated
 polynomial?
Every odd or other derivative is missing. For example, $f(\mathrm{x}), f^{\prime \prime \prime}(\mathrm{x}), f^{(5)}(\mathrm{x})$, and $f^{(7)}(\mathrm{x})$
4. Write two expressions to describe you findings in the previous question, when differentiating $\cos (x)$, in terms of n.

$$
\begin{aligned}
& f^{(2 n)}(0)=(-1)^{n} \\
& f^{(2 n+1)}(0)=0
\end{aligned}
$$

5. Graph $P_{8}(x)$ and $f(x)=\cos (x)$. What do you notice?

The graph begins to take the shape of the cosine then goes to infinity.

TI-Nspire Navigator Opportunities

Note 1

Problem 1, Live Presenter

This would be a good place reinforce with students the difference between order and degree of a Maclaurin Polynomial. This can easily be done by clicking the order arrows and observe the changes in the polynomial at the bottom of the screen

Note 2

Problem 2, Live Presenter

You may want to go back to page 1.6, press tab and change $f 1(x)$ to e^{x}. In this way, you can continue to increase the order of the Maclaurin polynomial to illustrate what the questions in this problem are asking.

