Exploring Cavalieri's Principle

Time Required

ID: 12582
15 minutes

Activity Overview

Students will explore Cavalieri's Principle for cross sectional area and volume.

Topic: 3-Dimensional Geometry

- Cavalieri's Principle

Teacher Preparation and Notes

- To complete this activity, students will need to know how to change between pages, and how to grab and move points.
- The multiple-choice items are self-check. Students can check their answers by pressing menu and selecting Check Answer (or by pressing ctril + A). If desired, by using the TI-Nspire Teacher Edition software, teachers can change the self-check questions to exam mode so students cannot check their answer. On any question click the Teacher Tool Palette and select Question Properties. Change the Document Type from Self-Check to Exam.
- To download the student TI-Nspire document (.tns file) and student worksheet, go to education.ti.com/exchange and enter "12582" in the keyword search box.

Associated Materials

- CavalierisPrinciple_Student.doc
- CavalierisPrinciple.tns

Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the keyword search box.

- Volume (TI-Nspire technology) - 9689
- Making Hay While the Sun Shines \& Not Losing It in the Rain (The Geometry of the Big Round Bale) (TI-Nspire technology) - 10559
- The Painted Cube (TI-Nspire technology) - 17173

Problem 1 - Oblique Cylinder

Students will begin this activity by investigating the volume of a cylinder that is not necessarily right. The radius of the base and the height of the cylinder are fixed, but the angle of the cylinder changes when students move point A. Students will discover that the volume does not depend on the angle of the cylinder if the cross sectional area remains fixed.

Problem 2 - Triangular Pyramid

Students will next explore the volume of a triangular pyramid. When students move point A, they will discover that the area of the parallel cross sections remain fixed and the volume of the pyramid does not depend on where A is as long as the height of the pyramid remains fixed at 10 cm .

Problem 3 - Cavalieri's Principle

Finally, students are given Cavalieri's Principle and are asked to explore three prisms with the same volume since the area of the cross sections are all $4 \mathrm{~cm}^{2}$ and the heights are all 5 cm .

Student Solutions

1. No matter the angle of the cylinder, the volume remains the same.
2. Cross sectional triangle areas remain the same.
3. The volume remains the same.
4. $4 \mathrm{~cm}^{2}$
5. $20 \mathrm{~cm}^{3}$
