Exploring Quadratic Equations-Teacher Notes

Activity Overview

Students will stretch and translate the parabola given by $y=x^{2}$ and determine the effects on the equation. Students will also explore finding the vertex and zeros of a parabola and relate them to the equation.

Materials

- Technology: TI-Nspire handheld, TI-Nspire CAS handheld, or TI-Nspire computer software
- Documents: Explore_Quadratics.tns, Explore_Quadratics_Student.doc

Problem 1 - Stretching a Parabola

In this problem, students are told $y=x^{2}$ is an equation in our library of functions and that the graph of $y=x^{2}$ is called a parabola. We can use the idea of transformations (shifting, stretching, and so on) to obtain other parabolas. Students will make a connection between the curvature of the parabola and the equation. Several questions follow to determine if students have made a connection.

Note: To stretch the graph, the students will see the cursor change to $\%$. This means the graph can be
 grabbed and changed without changing the vertex.

Discussion Questions:

- Can you make the coefficient of x^{2} negative?
- What happens to the graph if the coefficient of x^{2} is between 0 and 1 ? Greater than 1 ? Less than 0 ?
- What happens if the coefficient of x^{2} is 0 ?

Problem 2 - Translating a Parabola

In this problem, students will translate the parabola $y=x^{2}$ by grabbing the vertex. Students will observe how the graph changes and make a connection between the vertex and equation. Several questions follow to determine if students have made a connection.

Discussion Questions:

- How is the equation different when the vertex is in the first quadrant compared to when it is
 in the second quadrant?

Ein Exploring Quadratic Equations-Teacher Notes

- For a parabola written in the form $y=a(x-h)^{2}+k$, what happens to the graph of $y=x^{2}$ when the constant k is positive? Negative?
- What happens to the graph of $y=x^{2}$ when the constant h is positive? Negative?
- How can we change the equation to standard form?

Problem 3 - Finding Zeros of a Quadratic Graphically
In this problem, the students will move a point on the graph of a parabola to find the zeros and the maximum/minimum. Students will answer a question about the zeros found in the exploration.

Discussion Questions:

- What is similar about the coordinates of the points representing the x-intercepts?
- How does the x-coordinate of the vertex relate to the two x-intercepts?

- What happens to the maximum/minimum when there is only one intercept?
- How can we algebraically find the zeros of the functions?

Problem 4 - Connecting Zeros to the Equation

In this problem, students will find the zeros of the parabola by finding the intersection of the parabola and the x-axis. Students will see the factored form of the quadratic equation and draw a connection between the zeros and the factored form. Students will then view the intercept form of a quadratic equation to determine how to use this form to find the zeros of the function without a graph.

Discussion Questions:

Factored form: $(x-1) \cdot(x+3)$

- How can we use the factored form of the quadratic equation to find the zeros?
- Is there an algebraic way to find the zeros?
- How can you find the zeros of a quadratic without the graph?
- How do we change the equation from intercept form to standard form?
- The x-coordinate of the vertex can be found by averaging the zeros.

Exploring Quadratic Equations-Teacher Notes

Student Solutions

1. a. As coefficient of x^{2} increases in magnitude the graph gets skinnier.
b. When coefficient is negative the graph opens down.
c. Negative since it opens down.
d. Any positive number will suffice.
2. a. Left and right shifts change the number inside the parentheses and up down shifts change the number on the end.
b. h is the x-coordinate of the vertex and k is the y-coordinate.
c. $(-4,-2)$
d. $(3,1)$
e. $c(x)=-3(x+1)^{2}+1$
f. $f(x)=2(x+2)^{2}+3$ answers will vary
g. $f(x)=5(x+2)^{2}+3$ answers will vary
3. a.

b.

c.

4. a. p and q are the zeros.
b. -2 and 4. Must be of the form $a(x+2)(x-4)$
c. The x-coordinate of the vertex is the average of the zeros.
