General Quadratics, Cubics, and Quartics

It's hard to not know just about all there is to know about the characteristics of the graph of the general quadratic ($2^{\text {nd }}$ degree polynomial) function. It's a parabola that is either always concave up or always concave down. We can easily find its zeroes via the quadratic formula. And, as you probably learned in algebra, there is a formula for the vertex. If we define $\mathbf{y} \mathbf{2}(\mathbf{x})=\mathbf{a}^{*} \mathbf{x}^{\wedge} \mathbf{2}+\mathbf{b}^{*} \mathbf{x}+\mathbf{c}$, find the derivative and set it to zero and solve, possibly all in one step with our TI-89 in hand, we find that the vertex occurs at the point where $x=-b /(2 a)$. (See figure 0.)

But what do we know about cubic ($3^{\text {rd }}$ degree) and quartic ($4^{\text {th }}$ degree) functions?

Exercise 0:

- In figure 1 you see a cubic function that has three x-intercepts. How many critical points are there? How many inflection points?
- In figure 2 you see a cubic function that has $1 x$-intercept. How many critical points are there? How many inflection points?
- In figure 3 you see a cubic function that has $1 x$-intercept. How many critical points are there? How many inflection points are there?

You undoubtedly noticed that each cubic in figures 1 through 3 appears to have a single inflection point.
 $\mathbf{a}, \mathbf{b}, \mathbf{c}$, and \mathbf{d}. Give the command DelVar a,b,c,d before proceeding.

Exercise 1: Prove that all cubic functions have exactly one inflection point. To do so, get a formula for its x-coordinate in terms of the coefficients of $\mathbf{y 3}$. [You will want to give the command $\boldsymbol{d}(\mathbf{y} \mathbf{3}(\mathbf{x}), \mathbf{x}, \mathbf{2})$, which computes the $\mathbf{2}^{\text {nd }}$ derivative of $\mathbf{y 3}$.] Put your formula to use to find the inflection point of $y 1(x)=4 x^{3}-6 x^{2}-5 x-3$. Then use your TI-89's Inflection point feature (see figure 4) to confirm that your formula worked.

You might call the local maximum and minimum of the cubics in figures 1 and 2 "vertices" because of their similarity in appearance to the vertices of parabolas, but they are not generally called that. Nevertheless, just as we found a formula for the vertex of a parabola earlier, you can find a formula for these local extrema (for a cubic that has them), while at the same time establishing the conditions under which a cubic will have them.

Exercise 2: Prove that, in general, if a cubic function has a local maximum, then it has a local minimum, and vice versa. [It can't have one without the other.] To do so, get a formula (in terms of the coefficients) for the critical points. Under what conditions (in terms of the coefficients) will there be both a local maximum and minimum? [To begin to answer all of these questions, you will want to give the command $\boldsymbol{d}(\mathbf{y} \mathbf{3}(\mathbf{x}), \mathbf{x})$, which computes the derivative of $\mathbf{y} 3$.] Use your formula to find the extrema for $y 1=4 x^{3}-6 x^{2}-5 x-3$. Then use your TI-89's Minimum and Maximum features (see figure 4, menu options 3 and 4) to confirm that your formula worked.

Do you see the rather striking similarity between the quadratic formula and the formula you just derived for finding the extrema of a cubic? Math just keeps getting better, doesn't it!

Exercise 3: Find the x-coordinate of the midpoint of the line segment connecting the local maximum and local minimum for any cubic that has them. [You will have gotten results in Exercise 2 that say $\mathbf{x}=\ldots$ or $\mathbf{x}=\ldots$. If you move the cursor up so that result is highlighted and press ENTER, you can use the cursor to insert parentheses and change the "or" to a " + ", like so: $(\mathbf{x}=. .)+.(\mathbf{x}=. .$.$) . After$ getting that result, you can then divide by 2.]

Compare your result of Exercise with the result of Exercise 1. Is this surprising? Find the midpoint of the segment connecting the max and min points of the cubic $y 1=4 x^{3}-6 x^{2}-5 x-3$ of Exercise 2. Did you get the inflection point in Exercise 1?
Trace to this midpoint for that function. Does it look right?

Exercise 4: A common misconception is that if a function's derivative is zero, then it has a local maximum or a minimum there. Produce a specific cubic function (choose specific values for the coefficients) for which the derivative is zero somewhere but that point is neither a maximum nor a minimum. Keep it simple. [You might want to use Exercises 2 and 1 (in that order?) to help.] What kind of point is the critical point? Graph. Does it look right?

Exercise 5: Use the results of Exercise 2 to determine, in general, the conditions under which $\mathbf{y 3} \mathbf{3}^{\prime}(\mathbf{x})=\mathbf{0}$ yet $\mathbf{y 3}$ has neither a maximum nor a minimum there. Give an example of such a cubic, specifying nonzero values for all of the coefficients. What is going on at such a point on such a cubic? Graph. Does it look right?

Exercise 6: If $\mathbf{y} \mathbf{3}^{\prime}(\mathbf{z})=\mathbf{0}$ and $\mathbf{y} \mathbf{3}^{\prime \prime}(\mathbf{z})=\mathbf{0}$, then what is going on at the point $(\mathbf{z}, \mathbf{y} \mathbf{3}(\mathbf{z}))$? Graph one such cubic.
 coefficients are $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$, and \mathbf{e}. Give the command DelVar a,b,c,d,e before proceeding.

Exercise 7:

- In figure 5 is a quartic function which has 4 distinct x-intercepts. How many critical points are there? How many inflection points?
- In figure 6 is a quartic function which has 2 distinct x-intercepts. How many critical points are there? How many inflection points?
- In figure 7 is a "complete graph" (all important characteristics are showing) of a quartic function with no x-intercepts. How many critical points are there? How many inflection points?

Clearly, quartics are more complex than cubics. The number of critical points can range from 1 to 3 , while the number of inflection points can range from 0 to 2 . And both can be a little hard to see (if they even exist), as figures 6 and 7 show. Unfortunately, because of the difficulty in analyzing cubic equations in general, there isn't much to say about the critical points of a quartic, in general.

Exercise 8: In terms of its coefficients, under what conditions will $\mathbf{y} 4$ have:

- zero inflection points
- one inflection point
- two inflection points

You will want to find the second derivative of $\mathbf{y} 4$ and see where it equals 0 . This will give you a formula for determining the x-coordinates of any quartic that has inflection points.

Exercise 9: While the formula you found in Exercise 8 is unwieldy at best, you can observe that there will be:

- no inflection point only if the radicand is negative,
- one (repeated) inflection point only if the radicand is zero, and
- two distinct inflection points only if the radicand is positive

Show that, if the radicand is zero, there can be no inflection point; hence the only possibilities (for quartics) are either 0 or 2 inflection points. [Hint: The second derivative is quadratic. Sometimes quadratics don't change sign. When?]

Exercise 10: Use the results of Exercises 8 and 9 to produce equations and graphs of quartics with 0 and 2 inflection points. Use the formula that you found and used to determine the number of inflection points in Exercise 8 . Be sure to observe the necessary change in concavity for each of your functions.

Exercise 11: While it is not possible to find a general formula for the critical points, play with the coefficients of $\mathbf{y} 4$ until you find graphs whose characteristics match those in figures 5 through 7. Then, if there are any, find the extrema and inflection points. Be sure to use your formula from Exercise 9 to find the inflection points. By all means use your ' 89 to confirm your answers.

Exercise 12: If you have access to a powerful Computer Algebra System (such as Derive ${ }^{\mathrm{TM}}$), find a general solution to the general cubic equation, $\mathbf{y} 3=\mathbf{0}$ (with $\mathbf{y 3}$ as defined earlier). [It's a big mess, all right, but are you surprised that there is a formula? It is called Cardan's Formula.] If your CAS can solve the general cubic equation, it can find a formula for the critical points of the general quartic. Do you think this formula is useful and/or usable?

