Irrational Thoughts

$7 \quad 8 \quad 9 \quad 10$
 $11 \quad 12$

TI-Nspire CAS

Investigation

Student

45min

Aim

Identify strategies and techniques to express irrational numbers in surd form.

Equipment

For this activity you will need:

- TI-Nspire CAS

Irrational Investigation:

Start a new TI-nspire document and insert a Notes application.

Type the heading:

Number

This text is meant as a label only.

Press CTRL + M to insert a maths box next to the text.

In the maths box type:

$$
\mathrm{n}:=12
$$

Note: The ": $=$ " is located on the keyboard for CX model calculators or can be input using a combination of keys on earlier models or the computer software.

The next task is to hide the output of the maths box. Place the cursor back over the maths box and press Ctrl + Menu (Equivalent to a right-mouse click).

Select Maths Box Attributes...

Use the first option to Hide the Output of this first entry. The output in this case simply confirms that n has been assigned a value.

Press [Enter] to confirm the selection, the again to exit the maths box.

Navigate to the next line. Make sure the cursor is not 'inside' the maths box. Type the following:

Prime Factors

Insert another maths box $(\mathrm{Ctrl}+\mathrm{M})$ and press the [Menu] key and select Calculations, followed by Number then Factor.

Factor the number stored in n by typing n in the factor command.

This command will express the number currently stored in n as a product of its prime factors.

Change the attributes of this maths box to hide the input.

Navigate to the next line and type:

	1.1	,	*Unsaved ∇	们
Number $\mathbf{n}:=12$				
Prime Factors $2^{2.3}$				
Surd 2. $\sqrt{3}$				
		x		

If the answer for surd form is not displayed as shown above, the document settings will need to be adjusted. The best way to achieve this is to set the Calculation Mode to "Auto" or "Exact".

Press the [Home] key and select Settings followed by Document Settings.

Use the [Tab] key to navigate to Calculation Mode and
 select Auto followed by OK.

Once the calculation mode has been set, return to the current document.

The prime factorisation of 12 is

This is displayed on the calculator:
The surd form is displayed on the calculator as:

$$
\begin{aligned}
& 12=2 \times 2 \times 3 \\
& 12=2^{2} \times 3 \\
& 12=2^{2} \cdot 3 \\
& 12=2 \sqrt{3}
\end{aligned}
$$

1. The value for n can be changed by editing the value in the maths box. Change the value for n for each of the following:

Prime Factorisation
a) $45=$
b) $28=$
c) $175=$
d) $539=$

Surd Representation

$$
\sqrt{45}=
$$

$\sqrt{28}=$
$\sqrt{175}=$
$\sqrt{539}=$
2. Explain how the surd representation (square root) relates to the prime factorisation for each number in question 1.
3. Change the value for n for each of the following:

Prime Factorisation
a) $50=$
b) $\mathbf{1 4 7}=$
c) $242=$
d) $507=$

Surd Representation

$$
\sqrt{50}=
$$

$$
\sqrt{147}=
$$

$$
\sqrt{242}=
$$

$$
\sqrt{507}=
$$

4. Complete the following statement:
"If $n=a^{2} b$ and a and b are both positive prime numbers then $\sqrt{n}=$ \qquad "

The CAS calculator can work with general rules such as the one above. Insert a calculator application by pressing Ctrl + I and select calculator.

Type the following:
$\sqrt{a^{2} b}$

5. Write down the answer produced by the calculator for $\sqrt{a^{2} b}$

The CAS calculator treats variables as 'any number'. The value of a number can be restricted using " | ". This symbol can be read as 'given that'.

Repeat the above question using the restriction that ' a ' is greater than zero.

$$
\sqrt{a^{2} b} \mid a>0
$$

6. Write down the answer produced by the calculator for $\sqrt{a^{2} b} \mid a>0$

Not all numbers can be written in the form $n=a^{2} b$ the next set of numbers explore other forms of a natural number.
7. Change the value of n for each of the following:
Prime Factorisation Surd Representation
a) $24=$
b) $135=$
c) $56=$
d) $875=$

$$
\sqrt{24}=
$$

$$
\sqrt{135}=
$$

$$
\sqrt{56}=
$$

$$
\sqrt{875}=
$$

8. Based on your results from questions 7a) to 7d), complete the following statement: "If $n=a^{3} b$ and a and b are both positive prime numbers then $\sqrt{n}=$ \qquad "
9. Change the value of n for each of the following:

Prime Factorisation
a) $31=$
b) $105=$
c) $273=$
d) $154=$
$\sqrt{273}=$
Surd Representation
$\sqrt{31}=$
$\sqrt{105}=$
$\sqrt{154}=$
10. Explain the result for questions 9a) to 9d).
11. Change the value of n for each of the following:

Prime Factorisation

a) $200=$	$\sqrt{200}=$	
b)	$252=$	$\sqrt{252}=$
c)	$800=$	$\sqrt{800}=$
d)	$1512=$	$\sqrt{1512}=$

12. Explain what happens when a prime factor has a power (or index) greater than 2. Example: $8=2^{3}$. How is the surd expressed and why?
