\qquad

1. Explore several different a-values by clicking Δ or ∇.
a. Set $\mathbf{a}=1$. Describe the graph.
b. By definition, for the logarithmic function $f(x)=\log _{\mathrm{a}}(x)$, a cannot equal 1. What mathematical reason can you give for this restriction?
c. Set $\mathbf{a}=0$. Describe the graph.
d. By definition, for the logarithmic function $f(x)=\log _{\mathbf{a}}(x)$, a cannot equal 0 . What mathematical reason can you give for this restriction?
2. Explore several different a-values by clicking Δ or ∇.
a. For what a-values is the function increasing? Why?
b. For what a-values is the function decreasing? Why?
\qquad
3. Explore several different a-values by clicking Δ or ∇.
a. For each a-value, identify the x-intercept of the function. Interpret your results.
b. When $\mathbf{a}>0$, why is there no y-intercept?
c. For each a-value, what part of point P remains the same? Interpret your results.
4. Explore several different a-values by clicking Δ or ∇, such that $\mathbf{a}>1$.
a. What does $\mathbf{f}(x)$ approach as x approaches ∞ ? Explain.
b. What does $\mathbf{f}(x)$ approach as x approaches 0? Explain.
c. What is the equation of the vertical asymptote?
5. Explore several different a-values by clicking Δ or ∇, such that $0<\mathbf{a}<1$.
a. What does $\mathbf{f}(x)$ approach as x approaches ∞ ? Explain.
b. What does $\mathbf{f}(x)$ approach as x approaches 0? Explain.
c. What is the equation of the vertical asymptote?
6. Find the domain and range for the family of logarithmic functions $f(x)=\log _{a} x$ where $\mathbf{a}>0$ and $\mathbf{a} \neq 1$.

Name
7. Gail believes $\mathbf{f}(x)=\log _{\mathrm{a}} x$ will eventually intersect the y-axis. Is she correct? Why or why not?
8. Judy believes $\mathbf{f}(x)=\log _{\mathrm{a}} x$ has a horizontal asymptote. Is she correct? Why or why not?

