## ALGEBRA II ACTIVITY 9： <br> Geometric Sequences and Series Tlalgebra．com

ACTIVITY OVERVIEW：
In this activity we will
－Examine geometric sequences and series in Sequence mode
－Relate geometric sequences to their explicit forms
－Find the partial sums of a sequence in a table
－Determine if a geometric series is converging

|  |  |
| :---: | :---: |
|  |  |
|  |  |
| FUIIC： | PAF FOL SED |
| CIMIECTED Do |  |
| SEDUEDTIAL SIMUL |  |
|  |  |
|  | HDFiL2 j－T |
|  |  |

Press MODE．Change the fourth line to SEQ for sequence mode as shown above．

Press Y．You will notice that the screen looks vastly different than when it is in function mode．You have the capability to define 3 sequences， $\mathbf{u}, \mathbf{v}$ ，and $\mathbf{w}$ ．


Consider the sequence where $a_{1}=1$ and $a_{n}=2 * a_{n-1}$ ．To enter this sequence and generate a table of values．
$n$ Min will be 1 because the subscript of our initial term is $a_{1}$ ．The $\mathbf{u}(n)$ notation replaces the $a_{n}$ notation． Define $\mathbf{u}(n)$ as shown．Set $\mathbf{u}(n M i n)$ as 1 because $a_{1}=1$ ． ＊Note：the braces will appear after you press enter if you choose not to type them．

```
Flot Flotz Flots arin＝1
\(\because(n)\) 日 \(2+-10-1)\)
```



```
\(.4(n)=\)
（nWin）＝
\(\cdot \omega(n)=\)
心（nMin）＝
```

Press 2nd GRAPH to view the table．What appears to be happening in this pattern？Is the value of each term increasing at a constant rate，a slowing rate or an increasing rate？What function produces the same table？


A sum of terms in a sequence is a series．Next you will ask the calculator to find the partial sums of the terms in the sequence $\mathbf{u}(n)$ ．This will be defined like a sequence where the sum for the $n$th term， $\mathbf{v}(n)$ ，is the sum for the previous term， $\mathbf{v}(\mathbf{n - 1})$ ，plus the next term in the sequence $\mathbf{u}(n)$ ，which is $2^{*} \mathbf{u}(n-1)$ ．Define as shown．

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Press 2nd GRAPH to view the table．What is the relationship between the values in $\mathbf{u}(\boldsymbol{n})$ and $\mathbf{v}(\boldsymbol{n})$ ．What is the sum of the first six terms？

| $\cdots$ | L（n） | V（n） |
| :---: | :---: | :---: |
| 0 | EfRigi | Effigi |
| 1 |  |  |
| $\frac{2}{3}$ |  |  |
| 4 | ${ }_{18}$ | 15 |
| 5 | $\frac{15}{2}$ | 31 |
| $\underline{n}=\sqrt{6}$ |  |  |

Scroll down in the table．Do you notice anything more about the sum in column $\mathbf{v}(\boldsymbol{n})$ ？Does it appear to be stabilizing？

| \％ | L（n） | U（n） |
| :---: | :---: | :---: |
| 10 | 512 | 1023 |
| 11 | $10{ }^{104}$ | 2047 |
| 12 | 2048 | 40 S |
| 14 | 日ig |  |
| 15 |  |  |
| 16 | 32768 | 65535 |

Consider the sequence where $a_{1}=5$ and $a_{n}=0.1 * a_{n-1}$ ． To enter this sequence and generate a table of values． $n M i n$ will be 1 because our initial term is $a_{1}$ ．The $\mathbf{u}(n)$ notation replaces the $a_{n}$ notation．Define $\mathbf{u}(\boldsymbol{n})$ as shown．Set $\mathbf{u}(n M i n)$ as 5 because $a_{1}=5$ ．

```
Floti Flote Flots
    arin=1
\(\because(n)\) 日 \(0,1+4(n-1)\)
心 (nサin) 日 (5)
\(\because(n)=\)
    V(nWir)=
\(\cdot w(n)=\)
```

Press 2nd GRAPH to view the table．What appears to be happening in this pattern？Is the value of each term decreasing at a constant rate，a slowing rate or an increasing rate？What function produces the same table？


Find the sum of the terms in the sequence $\mathbf{u}(\boldsymbol{n})$ ．This will be defined like a sequence where the sum for the $n$th term is the sum for the previous term， $\mathbf{v}(\boldsymbol{n}-1)$ ，plus the next term in the sequence $\mathbf{u}(\boldsymbol{n})$ ．Define as shown．

|  |
| :---: |
| 心（n巾in）日（5） |
| （n）日v（n－1）＋0．1 |
| －$n-1$ ） |
| U（amin） |
| $\because \omega(n)=\square$ |

Press 2nd GRAPH to view the table．What is the relationship between the values in $\mathbf{u}(n)$ and $\mathbf{v}(n)$ ．What is the sum of the first six terms？Do you notice anything more about the sum in column $v(n)$ ？Does it appear to be converging？That is，does it appear to be approaching a value that it will never exceed？


| Return to $Y$ ．Arrow on top of the equals sign after $\mathbf{u}(\boldsymbol{n})$ ．Press ENTER to turn the sign off so that when you graph you will only be graphing the sums from $\mathrm{v}(\mathrm{n})$ ． | ```Floti Flote Flots \(\quad\) Min=1 \(\because(n)=0.1 *(n-1)\) L(nMin) \(=65\) \(\because(n)\) 日v( \(n-1)+0.1\) *- ( \(n-1\) )```  |
| :---: | :---: |
| Press WINDOW．Arrow down to set the Xmin，Xmax， Ymin，and Ymax as shown． |  |
| Press GRAPH and TRACE．What is happening to the sum as $n$ increases？Is there a value that the sum will never reach？ <br> Investigate other series．When do series continue to take on larger and larger values，and when do series converge？ | $\begin{aligned} & y=v(n-1)+0.1 * u(n-1) \\ & . \quad . \quad . \quad . \quad . \quad . \\ & y=0 . \\ & y=9 . \end{aligned}$ |

