Activity Overview

In this activity, students will be introduced to the concept of finding the volume of a solid formed by cross sections of a function that form certain shapes. Since volume is the area of the base times the height and $d V=$ Area.dx, students review areas of various shapes like squares, semicircles and equilateral triangles. Calculator screenshots are used to help students get a visual of the volume under consideration. Students will practice what they learn with exam-like questions.

Topic: Volume by Cross Sections

- Applications of integration
- Volume by cross sections

Teacher Preparation and Notes

- Part 1 of this activity takes less than 15 minutes. Part 2 contains three exam-like questions that have accompanying visuals that can be used as an extension or homework.
- Students will write their responses on the accompanying handout where space is provided for students to show work when applicable.
- To download the student worksheet, go to education.ti.com/exchange and enter "12280" in the keyword search box.

Associated Materials

- VolumeCrossSection_Student.doc

Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the keyword search box.

- The Region Between Two Curves (TI-89 Titanium) - 3464

Part 1 - Setting Up The Problem And Understanding The Concept

In this section students are introduced to the concept of finding the volume of a solid formed by cross sections of a function that form certain shapes. Since volume is the area of the base times the height and $d V=$ Area $d x$, students review areas of various shapes like squares, semicircles and equilateral triangles.

Part 1 ends with students finding the volume with equilateral triangle cross sections.

Student Solutions

1. $d x$
2. a. base times height. The area of a square with side x is x^{2}.
b. $\frac{1}{2} \pi r^{2}$
3. $\frac{1}{2} y \frac{\sqrt{3}}{2} y$
4. $0.433013 \mathrm{~cm}^{2}$
5. $\int_{0}^{2} \frac{1}{2} y \frac{\sqrt{3}}{2} y d x=\int_{0}^{2} \frac{1}{2}\left(\sqrt{x} \cdot e^{-x^{2}}\right) \frac{\sqrt{3}}{2}\left(\sqrt{x} \cdot e^{-x^{2}}\right) d x$ $=\int_{0}^{2} \frac{\sqrt{3}}{4} x \cdot e^{-2 x^{2}} d x$
If students use u-substitution, $u=-2 x^{2}$, $d u=-4 x d x$ and the limits of integration are from 0 to -8.

$$
-\frac{\sqrt{3}}{16} \int_{0}^{-8} e^{u} d u=-\frac{\sqrt{3}}{16}\left(e^{-8}-1\right)=\frac{\sqrt{3}}{16}\left(1-\frac{1}{e^{8}}\right)
$$

Part 2 - Homework

This section enables students to get a visual of challenging exam-like questions. Students should show their work on the first two questions and show their set up on the third question.

Student Solutions

1. $\frac{3 \pi}{32}$ units 3
2. 2 units 3
3. 1.57 units 3

