The Ambiguous Case of the Sine Law with TI-Nspire
Teacher Guide Algebra II or Trigonometry

Created by: Ray Fox, John Overton High School, Nashville, TN. Lisa Baranoski, Antioch High School, Nashville, TN.

Activity Overview

Students will determine the number of solutions by using the Ambiguous Law of Sines, given SAS.

TN State Standard

CLE 3103.4.4 Know and use the Law of Sines to find missing sides and angles of a triangle, including the ambiguous case. (Level 3 on Webbs Depth of Knowledge)

1. Given: $\sin (\mathrm{A})=\frac{\text { opposite }}{\text { hypotenuse }}$

Explain how $\sin (\mathrm{A})=\frac{\text { opposite }}{\text { hypotenuse }}$ is equivalent to: hypotenuse $* \operatorname{sine}(\mathrm{~A})=$ opposite?
Ans. May vary. Isolate opposite. Multiply by both sides by the hypotenuse. Therefore, hypotenuse cancels out on the right side leaving the equivalent equation above.
2. Formula for Ambiguous Law of Sines

If \mathbf{b} is the hypotenuse and \mathbf{a} is the opposite
side then
hypotenuse * $\sin (\mathrm{A})=$ opposite becomes
\qquad * $\sin (\mathrm{A})=$ \qquad when we have a

- RIGHT triangle. But what if it is not?
> Open the TI-Nspire document
Ambiguous_Law_of_Sines.

- Use 4 totrl 3 page down.
$>$ Press ctrl) (right side of NavPad) to move to page 1.2 and begin the lesson

3. Complete the table below.

(To grab, ©trr s) s) Move point p1 around to get the following cases:	- How many triangle(s) can you form, if any? - Describe what type of triangle(s) is/are formed, if any.	Number of solutions
$\mathrm{a}<\mathrm{b}^{*} \sin (\mathrm{~A})$	No triangles can be formed because the length of a is not long enough to form a triangle.	0 solutions
$\mathrm{a}=\mathrm{b}^{*} \sin (\mathrm{~A})$	One triangle is formed. A right triangle is formed by side a.	1 solution
$\mathrm{a}>\mathrm{b}^{*} \sin (\mathrm{~A})$ $\mathrm{and} \mathrm{a}<\mathrm{b}$	Two triangles are formed. Side a forms one obtuse and one acute with base side.	2 solutions
$\mathrm{a}>\mathrm{b}^{*} \sin (\mathrm{~A})$ $\mathrm{and} \mathrm{a}>\mathrm{b}$	Only one triangle can be formed. An obtuse triangle is formed by side a.	1 solution

The Ambiguous Case of the Sine Law with TI-Nspire Algebra II or Trigonometry

4. From the chart above, write a conjecture between the number of triangles created, if any, and the number of solutions.
The number of solutions is dependent on the length of the side opposite the given angle and by how many triangles can be created.
5. Place point p 1 where the number of solutions equal 1 . What do you notice about the length of a and $\mathrm{b} * \sin (\mathrm{~A})$? Side a is equal to $b * \sin (A)$
6. Place point p 1 where $\mathrm{a}=5.5 \mathrm{~cm}$. Is it possible for p 1 to equal 5.5 cm and the number of solutions equal 2? Explain.
Yes it is possible to have two solutions because two triangles can be created when the length of side a equals 5.5 cm .
7. Grab Point p 2 . Move point p 2 so angle A is an obtuse angle. How many triangles can you make now? Explain.
No more than one triangle because side a will always be longer than side b . Hence form the table, when $\mathrm{a}>\mathrm{b} * \sin (\mathrm{~A})$ and $\mathrm{a}>\mathrm{b}$, only one triangle can be formed with an obtuse angle.
8. Formative Assessment - Exit Slip (provide each student with a note card):

In each of the following, find the number of solutions. Explain.
a) Angle $A=45^{\circ}, a=\sqrt{2}, b=2$.

Therefore, $b \sin A=2 \sqrt{2} / 2=\sqrt{2}$, which is equal to a. There is therefore one solution: angle B is a right angle.
b) Angle $A=45^{\circ}, a=1.8, b=2$.

Again, $a<b . b \sin A=2 \sqrt{2} / 2=\sqrt{2}$, which is less than a. Therefore there are two solutions.
c) Angle $A=45^{\circ}, a=2, b=1.5$.

Here, $a>b$. Therefore there is one solution.
d) Angle $A=45^{\circ}, a=1.4, b=2$.
$a<b . b \sin A=2 \sqrt{2} / 2=\sqrt{2}$, which is greater than a. Therefore there are no solutions.

