
Dog Pen Problem (Maximum Area of a Rectangle Space) 
 
Activity Overview 
In this activity, students explore various approaches to “solving” the problem of maximizing the area of a 
rectangle space with a fixed perimeter in the context of a farmer's "dog pen". 
 
Concepts 

• Fixed Perimeter of a Rectangle 
• Maximum Area of a Rectangle 
• Quadratic Regression 
• Local Maximum  

 
Teacher preparation 
This activity allows students at different proficiency levels to explore the problem of maximizing the area 
of a rectangle with a fixed perimeter.  Students should have familiarity finding the perimeter and area of a 
rectangle. 
 
Classroom management tips 

• This activity is designed to be student-centered with the teacher acting as a facilitator while 
students work cooperatively.  The student worksheet is intended to guide students through the 
main ideas of the activity and provide a place to record their observations and reflections. 

• For the most part, students will manipulate pre-made sketches, rather than constructing the 
diagrams themselves.  Therefore, a basic working knowledge of the TI-Nspire CAS handheld is 
needed. 

• You may choose to use Problem 3—Symbolic Proof as an extension activity or the subject for a 
whole-class discussion.  

• The ideas contained in the following pages are intended to provide a framework as to how the 
activity will progress.  Suggestions are also provided to help ensure that the objectives for this 
activity are met. 

 
TI-Nspire CAS Applications 
Calculator, Graphs & Geometry, Lists & Spreadsheet, Notes 
 
One problem defines this activity:  A farmer wants to make the largest possible rectangular pen for his 
dogs.  He has 60 feet of fencing.  What is the largest area the pen can have?  What should the length and 
width of the pen be? 
 
To launch this activity, present this problem to the class and discuss with the students what they think the 
dimensions of the pen should be (you may want to give students color tiles, graph paper, and/or geo-
boards to accommodate their level of understanding of this problem).  Make sure that they understand 
that the perimeter is the sum of the lengths of the sides of the rectangle and that area is the number of 
square units needed to cover the surface of the entire rectangular region.  
 
Problem 1—Launch the Problem 
 
Step 1: Remind students to slowly drag point B to change the 

dimensions of the rectangle.  At each new location the 
students should record the values of width, length, 
perimeter, and area in the table provide on the 
Student Handout.  They should do this for at least 6 
different locations of B.  Note:  If students get a 
“dependant object locked” message as they drag point 
B the handheld can is telling them that it can not keep 
up with the speed of their entries.  They are probably 
pressing and holding a direction on the NavPad to 
make the point B move.  To troubleshoot this problem, 
tell them to  not hold down the direction on the 
NavPad.  

 



Students are asked to answer the questions on the Student Handout.  The teacher should then facilitate a 
discussion of their findings.  This can be done as a large group or small group discussion. 
 
During this discussion, students should notice that the perimeter of the rectangle does not change and 
that as the width changes the area changes. (Note: some students may notice that the area does not 
change at a constant rate).  Also, students should make conjectures about the dimensions of the 
rectangle when the area is maximized. 
 
Problem 2—Find the Rectangle with Maximum Area 
 
Step 1: Remind students to slowly drag point B to a new 

location and to press /^ to manually capture the 
rectangle’s width, length, perimeter, and area data for 
that location of point B.  Repeat this process to 
capture at least 10 different locations for point B.  
 
 
 
 
Each new location of point B captured will generate 
another row of data in the spreadsheet and plot the 
(length, area) data in a scatterplot (page 2.2).   
 
 

 
 

 
 
Students are asked to answer the questions on the Student Handout.  The teacher should then facilitate a 
discussion of their findings.  This can be done as a large group or small group discussion. 
 
Step 2:   During this discussion, students should notice that the scatterplot appears to be quadratic.  

They should also have used different methods for finding the dimensions of the rectangle with 
maximum area. 

  
ONE possible method would be to use the trace 
feature of the scatterplot window on page 2.2.  
 
To do this, select the Graphs & Geometry window on 
page 2.2 (To move between windows on this page 
press /e). 
 

 

 
 



 Press b.  
Choose 5:  Trace 

 
  

Use the NavPad to move between points on the 
scatterplot until the point with the largest area is 
highlighted.  This will give a good approximation for 
the width of the rectangle with the maximum area. 
 
Students may then look in table of collected data for 
the corresponding length for this rectangle.  Or they 
may use the A=width*length relationship to calculate 
the length given the area and width. 

 

 
  

A SECOND method might be to simply scroll through 
the Lists & Spreadsheet window on page 2.2 to find 
the dimensions that correspond to the largest area 
collected.  This will give them a good approximation 
for the dimensions of the rectangle and its area. 

 

 
  

A THIRD method might involve finding the Quadratic 
Regression for this set of data.  This is done in the 
Lists & Spreadsheet window on page 2.2 
 
Press b. 
Choose 4:  Statistics. 
Choose 1:  Stat Calculations 
Choose 6:  Quadratic Regression 

 

 

 



 Set the Quadratic Regression window as follows… 
 
Xlist:  width2 
Ylist:  area2 
Save RegEqn to: f1 
 
Press OK. 
 

 
  

The quadratic regression equation is now calculated 
and placed in f1 of the Graphs & Geometry window 
on page 2.2 
 
Graph the regression equation in this window and 
trace to find the maximum area. 

 

 
  

A possible FOURTH method for finding the maximum area would be to use the properties of 
1st derivative.  This is done by finding the first derivative of the regression equation, setting this 
new equation equal to zero and then solving for the width.  This will be the width value of the 
local maximum of this parabola (i.e. the width that corresponds to the maximum area). 
 

 Note:  These are not all the possible methods that your students may come up with.  Many of 
these methods will have some of the elements discussed here.  It is important to validate all 
correct methods and lead the students to use the appropriate method depending on the needs 
defined by the problem 

 
Step 3:   At this point students should be making the following conjecture… 

 
If a rectangle has a fixed perimeter, then the shape that maximizes the rectangle’s area is a 
square. 
 
This conjecture will be proven in Problem 3—Symbolic Proof. 

 



Problem 3—Symbolic Proof 
 
Students are asked to follow the following procedure using the CAS tools of the TI-Nspire CAS. 
 
Step 1: a.  Solve P=2w+2l for l.   

 
 
 
 
 
 
 
 
 
 
 
b.  Substitute this value of l into A=wl to find an     
     equation for A in terms of the variable (w). 
 
 
 
 
 
 
 
 
 
 
c.  Find the 1st derivative of this new equation. 
 
 
 
 
 
 
 
 
 
 
 
 
d.  Set this new equation equal to zero and solve for  
     w. 
 
 
 
 
 
 
 

 
 

 
 

 
 

 



 e.  Substitute this value of w into P=2w+2l and solve   
     for l. 
 

 
 
Students are asked to answer the questions on the Student Handout.  The teacher should then facilitate a 
discussion of their findings.  This can be done as a large group or small group discussion. 
 
During this discussion, students should be able to explain each step in the proof process.  For example 
they should be able to explain why they took the 1st derivative, set it equal to zero, and then solved it for 
w.  Students should know that this is a method to find local the local minimum or local maximum of a 
function. 
 
Finally, students should be able to explain that this process proves this conjecture, 
 
If a rectangle has a fixed perimeter, then the shape that maximizes the rectangle’s area is a square. 

They have shown that both the 
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l  for this rectangle, it follows that all the sides of the 

rectangle are equal, therefore it must be a square. 
 
Assessment and evaluation 
 
Included in this Activity is Problem 4—Divided Pen that can be used as an assessment and evaluation 
of the students 
 
In this problem you explore the following problem: 
 
The farmer decides he wants to divide his dogs' pen up into 
three congruent rectangular pens with the fencing running 
parallel to the width (see page 4.2).  He has 60 feet of fencing. 

 
 
You will use the TI-Nspire CAS to automatically collect data in a spreadsheet, make a scatterplot of the 
data, and make observations based on these representations. 
 
Activity extensions 
 
Teachers may want to use Problem 3—Symbolic Proof as an extension. 
 
Student TI-Nspire CAS Document 
 


