Name	-
Class	-

Problem 1 – Characteristics of the Chi-Square Distribution

- 1.3/1.4: How does the chi-square distribution with 5 degrees of freedom differ from the standard normal distribution?
- 1.5 Change the degrees of freedom to 10, 25, and 50. What happens to the shape of the distribution?

Problem 2 – Critical Values for a Chi-Square Distribution

- 2.2: Use the **Integral** tool to determine the area between the critical values, 3.24697 and 20.4832.
- 2.3/2.4: Use the inverse chi-square command (invchi2) to find the critical values for the following. Remember that degrees of freedom = n 1.

	χ^2_{L}	χ^2_R
80%, <i>n</i> = 12		
90%, <i>n</i> = 23		
98%, <i>n</i> = 12		
99%, <i>n</i> = 23		

Problem 3 – Constructing a Confidence Interval

The weights of 15 randomly selected samples are listed on page 3.4. Construct a 95% confidence interval to determine if the differences in the weights are acceptable.

3.4:	sample standard deviation:	_
3.5:	critical values:	confidence interval:

Are the differences in weights acceptable? Explain.

Problem 4 – Practice

- 4.1/4.2: Construct a 99% confidence interval for the standard deviation of time spent on homework by all the students at the school.
- 4.3/4.4: Construct an 80% and 90% confidence interval for the standard deviation of all the test scores.