\qquad

Number Sense：Real Numbers
 Student Worksheet

Overview

The Overview introduces the topics covered in Observations and Activities．Scroll through the Overview using（ \square to review，if necessary）．Read each screen carefully．Look for new terms， definitions，and concepts．

Observations

The Observations illustrate number sense concepts relating to real numbers．Scroll through the Observations using \square to review，if necessary）．Read each screen carefully．When you come to a Write an Observation screen，stop and write the answers to the questions on your worksheet．

hfiITE THFEE DIFFEFETIT Ifififtializl riluHE Efis．
use mauf hafirsheet．

Observation 1

Write three different irrational numbers．Show your work．
\qquad
\qquad

Observation 2

Try these problems．
Use the real number properties to solve the following problems quickly．Show your work．
$25 \times 24=$
$8 \times 102=$ \qquad
$6 \times 46=$ \qquad
\qquad
\qquad

Activities

The Activities help you practice real number concepts. You can select from two activities-
Raining Reals and What Is My Property? Follow these steps to play the activity and complete your worksheet.

1. Make sure you are in the Activities for this section.
2. Highlight an activity using Δ or \square, and press ENTER.

Scoring: Every correct placement earns 2 points.

The game automatically ends if you have answered incorrectly four times (shown in the top right corner), or you press \langle QUIT \rangle to stop.

Raining Reals

1. Highlight a level (silver = less difficult; gold = more difficult), and press ENTER to select it.
2. As the numbers fall on your screen, quickly determine if the "raining" number is rational or irrational.
3. Press \square to move the number into the RATIONAL set, or press \square to move the number into the IRRATIONAL set. If the answer is incorrect, the correct answer is displayed; press any key to resume play.
4. Follow your teacher's instructions for how long to play the activity.
5. What level did you play? \qquad
6. What was your final score? \qquad
7. How many incorrect answers did you have? \qquad
(Shown in top right corner of the screen.)
8. Write a paragraph describing the activity. Describe your strategy for playing.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Name \qquad
Date \qquad

Activities (continued)

gSLEST All intrincip	
1	
E	UHAT IS HV FRED
	USE THE GFRFDHETS TO FICH THE GDFFEGT FEDFEFTM
SELECT \& FFESS [E[ITEF] - ${ }_{\text {¢ }}$	

Scoring: You get two attempts to solve each problem. You earn 2 points for a correct answer on the first try, 1 point for a correct answer on the second try.

You can earn up to 16 points.

What Is My Property?

1. Look at the equation and decide which single property, out of these six, it represents.

- Commutative +
- Commutative *
- Associative +
- Associative *
- Distributive * Over +
- Distributive * Over -

2. Scroll through the property choices with \square and/or \triangle. To select a property, press ENTER. If the answer is incorrect, the correct answer is displayed; press any key to resume play. As you play the activity, record each equation and its property.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. What was your score? \qquad
\qquad
\qquad

囲 Try-It! ${ }^{\text {TM }}$ on Your Tl-83 Plus or TI-73

Investigate how the graphing calculator deals with irrational numbers.
In the Overview, you used the Pythagorean theorem to find the length of $\sqrt{2}$. Draw a right triangle so that the hypotenuse has length $\sqrt{2}$. Pythagoras (569-475 B.c.), a great Greek mathematician, discovered irrational numbers (numbers that are not rational and therefore are not ratios). There is a proof that, for example, $\sqrt{2}$ cannot be written as a fraction.

Hint: Draw each leg with length 1 inch. The hypotenuse is $\sqrt{1^{2}+1^{2}}=\sqrt{1+1}=\sqrt{2}$

Remember that $\sqrt{2} \times \sqrt{2}=2$. Picture this by envisioning a square whose sides measure $\sqrt{2}$ units. You created this length in your picture above.

Look at the square whose side has a length of $\sqrt{2}$ on the Geoboard screen below. Can you see that the area is $\sqrt{2} \times \sqrt{2}=2$ square units? Count it up! Shade in the area on the screen shown.

—_ From the TI-73 Geoboard application
\qquad
\qquad

Try－It！${ }^{\text {TM }}$ on Your TI－83 Plus or TI－73（continued）

Find the graphing calculator decimal approximation for $\sqrt{2}$ ．

To Do This	Press	Display（TI－83 Plus shown）
1．Exit the Topics in Algebra 1 application and clear the Home screen．	［2nd［QuIT］ 〈EXIT〉 CLEAR	
2．Select the Float setting from the mode screen． Notes：See TIp ${ }^{\text {TM }}$ 2：Adjusting Your Graphing Calculator Settings for details． The TI－83 Plus mode screen varies slightly from the TI－73．	MODE until Float is highlighted ENTER	
3．Return to the Home screen．	［2nd［QuIT］	
4．Calculate the decimal approximation for $\sqrt{2}$ ．	$\begin{aligned} & \text { 2nd }[r] 2 \square \\ & \text { ENTER } \end{aligned}$	F（2） 1.414213562
5．Square your result． Note：Ans＝previous answer．The graphing calculator remembers that you entered $\sqrt{ }(\mathbf{2})$ ．	x^{2} ENTER	$\left\|\begin{array}{rr} \Gamma(2) & 1.414213562 \\ \mathrm{Hrrs}^{2} & 2 \end{array}\right\|$

Is $\sqrt{2}$ equal to the decimal 1.414213562 ？It looks like the graphing calculator says this is true． Calculate 1.414213562^{2} to see．

6．Calculate the square of 1.414213562 ．	\square 414213562 \square ENTER	「2） 1.414213662 Ans 2 1.414213562 2 1.999999999

The answer shows 1．999999999，but you know you should get the answer 2.
Be careful！When you use your graphing calculator，you have to know your math．The graphing calculator can do amazing math，but it only shows you an approximation for many answers．You have to understand the problem before you use the graphing calculator．It is up to you to determine if graphing calculator answers are reasonable and how you will use them．
\qquad
Section 3: Real Numbers
Date \qquad

[: Try-It! ${ }^{\text {TM }}$ on Your Tl-83 Plus or Tl-73 (continued)

Word Problem: Missy's Garden

Missy wants to build a small fence around a garden in her backyard. The garden is in the shape of a right triangle. One leg is 2 meters and the other leg is 1 meter. The store sells fencing in tenths of a meter.

1 m

1. What is the exact perimeter of Missy's garden? Show all your work.

Math Hint: Use the Pythagorean theorem to find the length of the third side of the garden, and then find the perimeter of the garden. (See the Real Numbers Overview on the graphing calculator.)
2. What length of fencing should Missy buy if the store only sells the fencing in tenths of a meter? Use the graphing calculator. Show all your work.

Graphing Calculator Hint: After you calculate the approximate answer on your graphing calculator, try setting MODE so that Float=1. See Tip Tlp 2: Adjusting Your Graphing Calculator Settings for details. This will give you one decimal place or tenths. Observe how the graphing calculator displays the results!
\qquad
\qquad

䀟 Try-It! ${ }^{\text {TM }}$ on Your Tl-83 Plus or TI-73 (continued)

Word Problem: Jose and Maria's Backyard Pool

Jose and Maria have a circular pool in their backyard. Their parents would like to make a cover for the pool. They bought a square piece of material whose sides are the same length as the diameter of the pool. The diameter of the pool is 3.5 meters.

1. How much material will they have left over? Find the exact and approximate answers. Use the graphing calculator. Show all your work. (See Hints below.)
\qquad
2. Exact answer: \qquad
3. Approximate answer (to 3 decimal places): \qquad

Graphing Calculator Hints:

- Use Float = $\mathbf{3}$ on your graphing calculator to display 3 decimal places.
- Press 2nd [π] to find the graphing calculator's approximation for π.

Math Hints:

- Area of a square: $A=s^{2}$, where s is the length of the sides of the square.
- Area of a circle: $A=\pi r^{2}$, where r is the radius of the circle (diameter $=2 r$).

Objectives

- To illustrate the real number system in a Venn diagram.
- To identify real numbers as rational numbers \cup irrational numbers.
- To review writing rational numbers as terminating or repeating decimals.
- To review writing irrational numbers as nonterminating, nonrepeating decimals.
- To show physical representations of the irrational numbers, $\sqrt{2}$ and π, and to review the Pythagorean theorem and the formula for finding the circumference of a circle.
- To state the real number system properties-commutative, associative, and distributive-as well as the identity and inverse properties.

Math Highlights

This section starts with the building of the Venn diagram of the real number system. Definitions of rational and irrational numbers are given. Two examples of irrational numbers, $\sqrt{2}$ and π, are developed. $\sqrt{2}$ is shown as the length of the hypotenuse of a right triangle with legs of 1 unit. π is shown as the circumference divided by the diameter for any circle. The statements of the properties of the real numbers follow.

Common Student Errors

- Many students may not have developed a solid understanding of number sets. Remind them that using rational and irrational numbers, they can name every location on a number line. Later in their studies of mathematics, this will be referred to as the Completeness Property of Real Numbers, which was an important discovery in mathematics. Later, they will also extend the real numbers to the complex numbers, $a+b \sqrt{-1}=a+b i$, which are numbers used, for example, in the study of the relationship between electricity and magnetism.
- Students probably have used $22 / 7$ or 3.14 as an approximation of π. They may think that these values are exactly π, but they are not equal to π. This provides an opportunity to talk about approximations to several decimal places in real problems. The worksheet problems give students an opportunity to find exact and approximate answers. There are wonderful web sites that show π to millions of places. Mathematicians are still searching for more place values. This study of π requires the use of computers to assist the search.
- Some students may not be aware that the ratio of the circumference of a circle C divided by the diameter d is π. $C / d=\pi$. This may be confusing because they have been told that π is irrational and is not a ratio. Yet π came from a ratio of circumference to diameter. It turns out that either C or d is also irrational. The mathematics to prove this is not given at this level; therefore, students have to accept this without much explanation. This is a deep discussion that will not be of interest to some students, but other students may find it fascinating.

Student Worksheet Notes with Answers

Overview

Tell students:

1. How to find the Overview, or tell them to review the instructions on the worksheet.
2. How to navigate the application, if they are not yet familiar with the application.
3. To scroll through the Overview on the graphing calculator. Point out new terms, definitions, and concepts, and tell students to look for them as they go through the Overview.

Observations

The Observations help students understand number sense concepts relating to real numbers. Tell students how to find the Observations.

 HfiITE THFEE DIFFEFEITT

USE MULF HAFirsheet.

Students see this screen with three possible answers.

Observation 1

Write three different irrational numbers. Students show their work.

Answers will vary.

```
    DIO TDIN IDTITE
THFEE EMAHFLES
    27.12112111211112 ...
    \sqrt{}{7}=2.64575131 ...
    1-4\sqrt{}{5}=-1.2606797 ..
```


中

Observation 2

Try these problems.
Students use the real number properties to solve the problems, showing their work.

- associative * property:

$$
25 * 24=25 *(4 * 6)=(25 * 4) * 6=100 * 6=600
$$

- distributive * over + property:
$8 * 102=8 *(100+2)=(8 * 100)+(8 * 2)=800+16=816$
- distributive * over - property:
$6 * 46=6 *(50-4)=(6 * 50)-(6 * 4)=300-24=276$

Students see the answers on the next screen.
Students should show that they know how to use the properties of the real number computations as shortcuts without the graphing calculator.

SHINT
TFi' THESE FFOELEHS ... SDHE SDLUTIDIS AFE:

Activities

Scoring: Every correct placement earns 2 points. When students give an incorrect answer, the correct answer displays.

The game automatically ends when they have answered incorrectly four times (shown in the top right corner), or they press $\langle\mathbf{Q U I T}\rangle$ to stop.

Scoring: Students get two attempts to answer. They earn 2 points for a correct answer, 1 point for a correct answer on the second try.

They can earn up to 16 points.

Raining Reals

Tell students to:

1. Highlight a level (silver = less difficult; gold = more difficult), and press ENTER to select it.
2. Determine if the "raining" number is rational or irrational.
3. Press to move the number into the RATIONAL set, or press \square to move the number into the IRRATIONAL set. If the answer is incorrect, the correct answer is displayed; press any key to resume play.
4. Follow your instructions. For example, students can play:

- until they have answered incorrectly four times (no time limit)
- until a certain amount of time has expired (high score wins)
- until a certain score has been reached (first student to reach the score with the fewest misses wins)
- over a period of time (days, weeks, etc.) for tracking improvement of high scores

5. Record the level they played.
6. Record their final scores.
7. Record how many incorrect answers they had.
(Shown in top right corner of the screen.)
8. Write their strategy for playing the game.

What Is My Property?

Tell students to:

1. Look at the equation and decide which one property, out of these six, it represents:

- Commutative +
- Commutative *
- Associative +
- Associative *
- Distributive * Over +
- Distributive * Over -

2. Scroll through the choices with \square and/or \triangle and press ENTER to select the correct property. If the answer is incorrect, the correct answer is displayed; press any key to resume play. As they play the activity, record each equation and its property.
3. Record their scores.

[- Try-It! ${ }^{\text {TM }}$ on Your TI-73 or TI-83 Plus

Tell students to:

- Use the Pythagorean theorem to draw a triangle whose two legs = 1 unit and whose hypotenuse $=\sqrt{2}$ units.
- Shade in the area on the Geoboard screen on the worksheets.
- Go through the keystroke example to:
- Find the graphing calculator decimal approximation for $\sqrt{2}$.
- Understand how the graphing calculator approximates numbers.
- Understand that they must be conscientious about the mathematics involved.

Word Problem: Missy’s Garden

Remind students to:

- Use the Pythagorean theorem to find the third side of the garden and then the perimeter.
- Set the decimal mode notation (MODE) to Float and then to $\mathbf{1}$ (answer rounded to tenths), so they can see how the graphing calculator displays answers.

1. Exact perimeter: $1+2+\sqrt{5}$ meters
2. Length of fencing rounded to tenths: 5.2 meters

Note: The number rounds down. This is mathematically correct, but impractical in the real world, where Missy would need to purchase 5.3 meters in order to fence the garden. You may want to discuss meaningful interpretation of word problems with the students.

Word Problem: Jose and Maria's Backyard Pool

If necessary, review the formulas for area of a square and area of a circle. They are shown on the worksheet.

Covering material left over:

1. Exact: Area of square - area of circle $=(3.5)^{2}-\pi(3.5 / 2)^{2}=12.25-3.0625 \pi$ square meters
2. Approximate: 2.629 square meters (3 decimal places; use Float=3)
