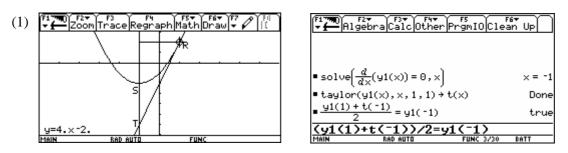

Ages 15-17 – Parabolas

Parabolas 1

- (1) Given $f(x) = x^2 + 2x 1$:
 - a) Calculate the slope of the secant line through the points P(-1, -2) and Q(3, 14) on the graph of f.
 - b) Calculate f'(1).
 - c) Illustrate the result graphically.
 - d) Now do the same question with P(1, 2) and Q(4, 23).
 - e) Calculate $f'(2\frac{1}{2})$.
 - f) Prove that $f'(x) = \frac{f(x+h) f(x-h)}{2h}$ for any x and h.
- (2) Prove the result in (f) for any polynomial $f(x) = ax^2 + bx + c$.


Solution: (partial)

Parabolas 2

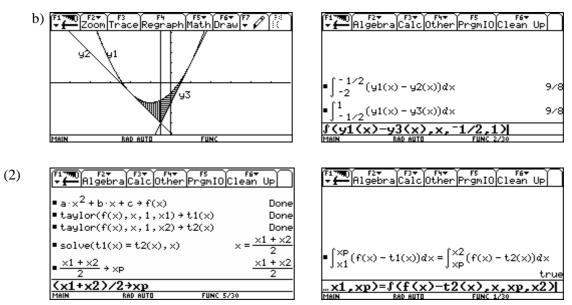
- (1) Given $f(x) = x^2 + 2x 1$:
 - a) Determine the coordinates of the summit *S* of the parabola.
 - b) Determine an equation of the tangent line t at the point R(1, 2).
 - c) Determine the coordinates of the point T of intersection between the tangent line t and the axis of symmetry of the parabola.
 - d) Compare the y-coordinates of the points R, S, and T. Conjecture?
- (2) For any point *R* on a parabola $y = ax^2 + bx + c$ prove your conjecture about the vertical position of the points *R*, *S* (the summit) and *T* (the point of intersection between the tangent line at *R* and the axis of symmetry of the parabola).

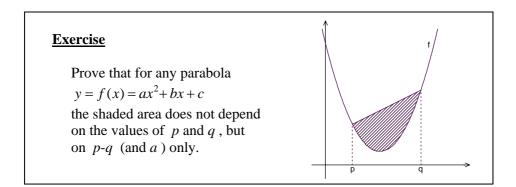
Solution: (partial)

Note:First screen:The equation of the tangent line is found by using a graphic tool (F5).Second screen:The equation of the tangent line is found by using a CAS tool (Taylor polynomial of degree 1).

(2)	$ = \frac{F_1}{F_1} Algebra Calc Other PrgmIO Cle$	r6 ▼ an Up
	■Define f(x)=a·x4+b·x+c	Done
	■ taylor(f(x), x, 1, xr) \rightarrow t(x)	Done
	• solve $\left(\frac{d}{dx}(f(x)) = 0, x\right)$	x = -b 2 · a
	■ ^{-b} / _{2'a} → xs	-b 2∙a
	$\frac{f(xr) + t(xs)}{2} = f(xs)$	true
	(f(xr)+t(xs))/2=f(xs)	
	MAIN RAD AUTO FUNC 5/30	

<u>Note</u>: By hand, the algebra is easier if you translate the parabola to the origin. With CAS there is no problem.


Parabolas 3


- (1) Given: $f(x) = x^2 + 2x 1$:
 - a) Find the abscissa *xp* of the point of intersection *P* between the tangent lines at $x_1 = -2$ and $x_2 = 1$. Conjecture?
 - b) Calculate the area of the region determined by the parabola, the tangent at $x_1 = -2$ and the vertical line x = xp. Calculate the area of the region determined by the parabola, the tangent at $x_2 = 1$ and the vertical line x = xp. Conjecture?

- (2) Given: $f(x) = ax^2 + bx + c$:
 - a) Find the abscissa *xp* of the point *P* of intersection between the tangent lines at any two points $(x_1, f(x_1))$ and $(x_2, f(x_2))$ on the parabola.
 - b) Prove that the vertical line x = xp divides the region between the parabola and the tangents into two regions with equal areas.
 - c) Prove that for the parabola $y = x^2$ the coordinates of $P \operatorname{are}\left(\frac{x_1 + x_2}{2}, x_1 \cdot x_2\right)$.

Solution: (partial)

(1) a)
$$xp = -\frac{1}{2}$$

