Ages 15-17 - Parabolas

Parabolas 1

(1) Given $f(x)=x^{2}+2 x-1$:
a) Calculate the slope of the secant line through the points $P(-1,-2)$ and $Q(3,14)$ on the graph of f.
b) Calculate $f^{\prime}(1)$.
c) Illustrate the result graphically.
d) Now do the same question with $P(1,2)$ and $Q(4,23)$.
e) Calculate $f^{\prime}\left(2 \frac{1}{2}\right)$.
f) Prove that $f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}$ for any x and h.
(2) Prove the result in (f) for any polynomial $f(x)=a x^{2}+b x+c$.

Solution: (partial)
(1) a) $\frac{14-(-2)}{3-(-1)}=4$.
b) $f^{\prime}(1)=2 \cdot 1+2=4$.
c)

(2)

Parabolas 2

(1) Given $f(x)=x^{2}+2 x-1$:
a) Determine the coordinates of the summit S of the parabola.
b) Determine an equation of the tangent line t at the point $R(1,2)$.
c) Determine the coordinates of the point T of intersection between the tangent line t and the axis of symmetry of the parabola.
d) Compare the y-coordinates of the points R, S, and T. Conjecture?
(2) For any point R on a parabola $y=a x^{2}+b x+c$ prove your conjecture about the vertical position of the points R, S (the summit) and T (the point of intersection between the tangent line at R and the axis of symmetry of the parabola).

Solution: (partial)

(1)

Note: First screen: The equation of the tangent line is found by using a graphic tool (F5).
Second screen: The equation of the tangent line is found by using a CAS tool (Taylor polynomial of degree 1).
(2)

Note: By hand, the algebra is easier if you translate the parabola to the origin. With CAS there is no problem.

Parabolas 3

(1) Given: $f(x)=x^{2}+2 x-1$:
a) Find the abscissa $x p$ of the point of intersection P between the tangent lines at $x_{1}=-2$ and $x_{2}=1$. Conjecture?
b) Calculate the area of the region determined by the parabola, the tangent at $x_{1}=-2$ and the vertical line $x=x p$.
Calculate the area of the region determined by the parabola, the tangent at $x_{2}=1$ and the vertical line $x=x p$.
Conjecture?
(2) Given: $f(x)=a x^{2}+b x+c$:
a) Find the abscissa $x p$ of the point P of intersection between the tangent lines at any two points $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$ on the parabola.
b) Prove that the vertical line $x=x p$ divides the region between the parabola and the tangents into two regions with equal areas.
c) Prove that for the parabola $y=x^{2}$ the coordinates of P are $\left(\frac{x_{1}+x_{2}}{2}, x_{1} \cdot x_{2}\right)$.

Solution: (partial)
(1) a) $x p=-\frac{1}{2}$.

(2)

Exercise

Prove that for any parabola $y=f(x)=a x^{2}+b x+c$ the shaded area does not depend on the values of p and q, but on $p-q$ (and a) only.

