TNSTRUMEN
INSIRUMENTS

ALGEBRA I ACTIVITY 16: Simulating Coin Toss Probability Tlalgebra.com

ACTIVITY OVERVIEW:

In this activity we will

- Use sequence command and random integer command to simulate a coin toss experiment
- Use operations on lists to analyze the experimental probability of getting heads
- Create a scatter plot to examine how the experimental probability changes as number of trials increases

How does the probability of getting heads when tossing a coin change in an experiment as the number of trials increases? Use the calculator to simulate a coin toss to see.

Press STATENTER to access lists. Arrow up to the top of L1 as shown above. Press 2nd [STAT, arrow over to OPS (operations) menu and select 5:seq(. When you press ENTER this command will be pasted to the
 command line for L1.

Complete the command Seq(X,X,1,100,1). This will instruct the calculator to fill the list by evaluating the expression X for variable X with values 1 to 100 counting by 1's. This will keep track of how many times the coin has been tossed up to 100 times.

Press ENTER. Press the up arrow twice to loop to the bottom of the list and see that the final entries appear as shown.

| | |
| :--- | :--- | :--- | :--- | :--- |
| Arrow to the top of L2. | |

Complete the command cumSum(L2). Remember, to access the name for $L 2$ press 2nd 2. This will instruct the calculator to sum L2 after each toss.

L1	\|L2	4	3
1	1		
$\frac{5}{3}$	0		
4	1		
$\frac{5}{7}$	1		
L3 = - MmSum (Lz			

Press ENTER. L3 now represents the total number of heads. Examine the sums. After how many tosses had you achieved 4 heads?

L1	\|L2	\| 23	3
1	1	1	
$\underline{2}$	1	2	
4	1	$\frac{5}{3}$	
5	0	3	
7		4	
LSC			

To find the experimental probability of getting heads after each toss in the sequence of 100 tosses, you would divide the total number of heads (L3) by the number of trials (L1). Arrow to the top of L4. Enter the command as shown.

Press ENTER. L4 now represents the ratio of number of heads to number of tosses, or experimental probability. Everyone has a probability of either 1 or 0 after the first toss. Why? How do the probabilities change after that?

L2	L3	\|L4	4
1	1	1	
$\frac{1}{0}$	$\underset{2}{2}$	6	
1	$\stackrel{3}{3}$		
0	3		
0	4		
L4\% 10×1			

Press the up arrow twice to loop to the bottom of the list. Scroll to examine how the probabilities appear as you approached 100 tosses. What do you notice? Why?

Press WINDOW. Set the window as shown.
Press [GRAPH. What do you observe about the shape
of your graph? How does it compare to the shapes of
your classmates graphs?
What is the theoretical probability of tossing heads in a
Press toss? Y and enter the theoretical
probability into Y1. This will graph a horizontal line to
represent this probability so you can observe how it
relates to the experimental probability.

