Math Objectives

- Students will identify the coordinates of a shape that has been translated.
- Students will identify the coordinates of a shape that has been reflected.
- Students will determine the original coordinates of a translated figure given its current coordinates and the directed distance of translation.
- Students will look for and make use of structure (CCSS Mathematical Practice).

Vocabulary

- pre-image
- image
- reflection
- transformation
- translation

About the Lesson

- This lesson involves translating and reflecting shapes in the coordinate plane.
- As a result students will
- Translate a shape horizontally and vertically by grabbing and moving points along a line.
- Determine the coordinates of the image given the amount of translation.
- Reflect a shape over the x-axis and the y-axis by moving points along a line.
- Determine the coordinates of the image given the direction of reflection.
- Determine the difference between a reflection and a translation.

TI-Nspire ${ }^{\text {TM }}$ Navigator ${ }^{\text {TM }}$

- Use Quick Polls to check student understanding.
- Use Class Capture to examine patterns that emerge.
- Use Live Presenter to engage and focus students.
- Use Teacher Software to review student documents.

Activity Materials

- Compatible TI Technologies: 迸 TI-Nspire ${ }^{\text {TM }}$ CX Handhelds,

TI-Nspire ${ }^{\text {TM }}$ Apps for iPad ${ }^{(8)}$ \square TI-Nspire ${ }^{\text {TM }}$ Software

Exploring Transformations

Move to the next page to transform figures in a coordinate plane by using translations and reflections.

Tech Tips:

- This activity includes screen captures taken from the TINspire CX handheld. It is also appropriate for use with the TI-Nspire family of products including TI-Nspire software and TI-Nspire App. Slight variations to these directions may be required if using other technologies besides the handheld.
- Watch for additional Tech Tips throughout the activity for the specific technology you are using.
- Access free tutorials at http://education.ti.com/calcul ators/pd/US/OnlineLearning/Tutorials

Lesson Files:

Student Activity

- Exploring_Transformations Student.pdf
- Exploring_Transformations Student.doc
TI-Nspire document
- Exploring_Transformations .tns

Discussion Points and Possible Answers

Tech Tip：If students experience difficulty dragging a point，check to make sure that they have moved the arrow until it becomes a hand （』）getting ready to grab the point．Press ctrl 阅 to grab the point and close the hand（ڭ）．

Note：Press ctri tab to switch from one application to the other（left side／right side）．

Move to page 1．2．

1．Drag point H left and right to translate the triangle horizontally． Drag point V up and down to translate the triangle vertically．

a．Identify the coordinates of points B^{\prime} and C^{\prime} if the triangle is translated 4 units to the left．How would you determine the coordinates mathematically？

Answer：The ordered pair for B^{\prime} is $(0,7)$ ，and the ordered pair for C^{\prime} is $(3,3)$ ．To determine the coordinates mathematically，subtract 4 from the x－coordinate in each ordered pair．
b．Identify the coordinates of points B^{\prime} and C^{\prime} if the triangle is translated 4 units to the left and 5 units down．How would you determine the coordinates mathematically？

Answer：The ordered pair for B^{\prime} is $(0,2)$ ，and the ordered pair for C^{\prime} is $(3,-2)$ ．To determine the coordinates mathematically，subtract 4 from the x－coordinate in each original ordered pair，and subtract 5 from the y－coordinate in each original ordered pair．

2．How must you translate $\triangle A B C$ for point B^{\prime} to have coordinates $(3,9)$ ？

Answer：The triangle should be translated 1 unit to the left and 2 units up to produce the new coordinates for B^{\prime} ．

Exploring Transformations
Teacher Notes
Math Nspired
3. Herschel moved point A to produce a new triangle. He then translated $\triangle A B C$ left 2 and down 5 .
a. Where would Herschel have placed point A for the coordinates of point A^{\prime} to be $(-4,-3)$?

Answer: He would have placed point A at $(-2,2)$ for A^{\prime} to have the ordered pair of $(-4,-3)$.

Teacher Tip: Students can move point A to experiment in answering this question. (Point A^{\prime} cannot be moved.)
b. Explain how you can determine the coordinates of point A mathematically.

Answer: Since Herschel translated $A(x, y)$ left 2 and down 5 , A^{\prime} is given by the ordered pair $(x-2, y-5)$. You can work backwards and find the x - and y-values by solving the equations $x-2=-4$ and $y-5=-3$.

Teacher Tip: Students may mistakenly subtract the values of the shift from the x - and y-values of the coordinates of A^{\prime}. You should help them understand that they are looking for the position of the original figure (pre-image) and must work backwards.

TI-Nspire Navigator Opportunity: Open Response Quick Poll
See Note 1 at the end of this lesson.

Move to page 2.1.

4. Reflect the triangle over the x-axis.
a. Identify the coordinates of points B^{\prime} and C^{\prime} after the triangle is reflected over the x-axis.

Answer: The ordered pair for B^{\prime} is $(1,-2)$, and the ordered
 pair for C^{\prime} is $(6,-4)$.
b. How would you determine the coordinates mathematically?

Answer: To determine the coordinates mathematically, find the opposite of the y-coordinate in each original ordered pair.

Teacher Tip: The open circles in the bottom left corner of the screen can be dragged left and right to reflect the triangle over the x - and y-axes. When the circle is dragged above the Y (for Yes), the triangle is reflected over the indicated axis. When the circle is dragged above the N (for No), the triangle is not reflected.

The original triangle on page 2.1 has vertices $A(3,5), B(1,2)$, and $C(6,4)$.
5. Reset the figure by moving the point back to the N position. Reflect the triangle over the y-axis.
a. Identify the coordinates of points B^{\prime} and C^{\prime} after the triangle is reflected over the y-axis.

Answer: The ordered pair for B^{\prime} is $(-1,2)$ and the ordered pair for C^{\prime} is $(-6,4)$.
b. How would you determine the coordinates mathematically?

Answer: To determine the coordinates mathematically, find the opposite of the x-coordinate in each original ordered pair.
6. Describe how a reflection is different from a translation.

Answer: A reflection flips a shape over while a translation slides a shape to a new location.

TI-Nspire Navigator Opportunity: True/False Quick Poll

See Note 2 at the end of this lesson.

Teacher Tip: At this point, you may want to discuss that a translation preserves congruence and orientation of a figure. A reflection preserves congruence but does not preserve orientation.
7. Reset the figure by moving the point back to the N position.
a. Predict the coordinates of points A^{\prime}, B^{\prime}, and C^{\prime} if the triangle is reflected over both the x-axis and the y-axis.

Answer: The ordered pair for A^{\prime} will be $(-3,-5)$, the ordered pair for B^{\prime} will be $(-1,-2)$, and the ordered pair for C^{\prime} will be $(-6,-4)$.

Teacher Notes
Math Nspired
b. Reflect the figure over both the x-axis and the y-axis and test your predictions.
c. How would you determine the coordinates of A^{\prime}, B^{\prime}, and C^{\prime} mathematically?

Answer: To determine the coordinates mathematically, find the opposite of the x - and y coordinates in each original ordered pair.

Move to page 3.1.

8. Drag the points labeled V and H so that the \mathbf{L} lies completely in Quadrant IV. What translations are needed so that the image of \mathbf{L} lies completely in Quadrant IV?

Sample Answers: Answers may include moving to the right
 6 units and down 6 units, or down 6 units and then to the right 6 units.

TI-Nspire Navigator Opportunity: Class Capture
See Note 3 at the end of this lesson.

Teacher Tip: Because the x - and y-axes are not in Quadrant IV, translating the image right 6 and down 6 works, but moving it right 5 and down 5 does not. Discuss with students that H and V are moving by integer values, but the transformations can be numbers other than integers. Make sure students understand that any number greater than 5 will work for either translation.

Move to page 4.1.

9. Move the \mathbf{L} to Quadrant IV by using the open circles in the upper left corner of the screen.
a. What transformations were necessary for the image of \mathbf{L} to appear in Quadrant IV?

Sample Answers: The \mathbf{L} could be reflected over the x-axis and then the y-axis or it could be reflected over the y-axis first and then the x-axis.

Teacher Notes
Math Nspired
b. Does the order in which the \mathbf{L} is reflected matter? Why or why not?

Answer: The order in which the letter is reflected does not matter. For example, if a shape has an ordered pair of $(3,4)$ and it is reflected over the x-axis and then the y-axis, the resulting ordered pair is $(-3,-4)$. If the same shape is reflected over the y-axis and then the x-axis, the resulting ordered pair is still $(-3,-4)$.
10. a. In the transformations on pages 3.1 and 4.1, why do you think that the letter \mathbf{L} was used to illustrate the concept of transformations rather than the letter \mathbf{H} ? Justify your answer mathematically or with a sketch.

Answer: The letter H has two lines of symmetry and looks the same when it is reflected either horizontally or vertically. It is easier to see the results of a reflection with the letter L , which does not have a line of symmetry.
b. What other letters would be good choices to illustrate transformations using reflections?

Sample Answers: G, J, P, Q, R
c. What letters are not good choices to illustrate transformations using reflections? Explain your answer.

Answer: Any letter that has a line of symmetry would not be a good choice. For example: O, X, C, A, M.

TI-Nspire Navigator Opportunity: Quick Poll

See Note 4 at the end of this lesson.

Wrap Up

Upon completion of the discussion, the teacher should ensure that students understand:

- How to identify the coordinates of a shape that has been translated.
- How to identify the coordinates of a shape that has been reflected.
- How to determine the original location of a translated figure given its current location and the amount of translation.
- The difference between translations and reflections.

Exploring Transformations
Math Nspired

Tien TI-Nspire Navigator

Note 1

Question 3, Open Response Quick Poll: Have students send their response to 3a through an open response Quick Poll. If students have difficulty with the question, send the following Quick Poll after discussing 3b.
Question: After translating the triangle to the right 3 and up 2, the coordinates of A^{\prime} are $(-3,5)$. What is the pre-image of A '?
Answer: (-6, 3)

Note 2

Question 6, True/False Quick Poll: Send the following True/False Quick Poll.
Question: A reflection preserves orientation.
Answer: False

Note 3

Question 8, Class Capture: Use Class Capture so that students can see multiple solutions to \#8.

Note 4

Question 10, Quick Poll: Have students send responses to 10 b and 10 c through Quick Poll. The visual representation of the letters in the students' responses will help students "see" how many lines of symmetry each letter has, if any.

