\qquad
Purpose: To use CAS and a variety of examples to discover the procedure for computing the derivative of a composite function.

Open the Chain Rule document on your handheld and follow the directions.

1. To discover the Chain Rule, first practice taking derivatives of a few functions using the handheld. Since each function will soon be an inner and outer function in the derivative of a composite, it will be helpful to keep a catalog of these derivatives in front of you.

Function	Inner	Outer	$\frac{d}{d x}$ (inner)	$\frac{d}{d x}$ (outer)
$\sqrt{1+x^{2}}$	$1+x^{2}$	\sqrt{x}	$2 x$	$\frac{1}{2 \sqrt{x}}$
$\sin (2 x)$	$2 x$	$\sin x$	2	$\cos x$
$(x-1)^{3}$	$x-1$	x^{3}	1	$3 x^{2}$
$(3 x+2)^{4}$	$3 x+2$	x^{4}	3	$4 x^{3}$
$\tan \left(x^{2}\right)$	x^{2}	$\tan x$	$2 x$	$\sec ^{2} x$
$\sin ^{2} x$	$\sin x$	x^{2}	$\cos x$	$2 x$

2. Use the handheld to compute the following derivatives.

Function

$$
\sqrt{1+x^{2}}
$$

$$
\sin (2 x)
$$

$$
(x-1)^{3}
$$

$$
(3 x+2)^{4}
$$

$$
\tan \left(x^{2}\right)
$$

$$
\sin ^{2} x
$$

Derivative

$$
\frac{x}{\sqrt{x^{2}+1}}
$$

$$
2 \cos (2 x)
$$

$$
3(x-1)^{2}
$$

$$
12(3 x+2)^{3}
$$

$$
2 x \sec ^{2} x^{2}
$$

$$
2 \sin x \cos x
$$

3. Based on these examples, can you see a pattern? Write out your guess by filling in the right side of the following equation.
$\frac{d}{d x}(f(g(x)))=\quad f^{\prime}(g(x)) \cdot g^{\prime}(x)$
4. Try these out (Use your handheld to check your results):

$$
\frac{d}{d x} \tan ^{2}(3 x)=\frac{6 \sin (3 x)}{(\cos (3 x))^{3}}
$$

$$
\frac{d}{d x} \sqrt{16-4 x^{2}}=\frac{-2 x}{\sqrt{4-x^{2}}}
$$

