Ų	Chords and Circles
	ChordsAndCircles.tns

Name	
Class	

Problem 1 – Relationship between a chord an its perpendicular bisector

Circle *A* is shown on page 1.3. \overline{BC} is a chord of the circle, and point *D* is the midpoint of \overline{BC} . The perpendicular bisector of \overline{BC} is also shown. Drag point *B* around the circle.

1. What is true about the perpendicular bisector of \overline{BC} ?

Hide the perpendicular bisector, \overline{AD} , and use the **Segment** tool to draw \overline{AD} . Then use the **Length** tool to display the lengths of \overline{BC} and \overline{AD} . Double click on each text box and enter a label for the measurement. Drag point *B* around the circle.

- 2. How does the length of \overline{BC} relate to that of \overline{AD} ?
- 3. What happens to \overline{BC} when point D coincides with point A (i.e., when AD = 0)?

On page 1.7, the length of \overline{BC} has been transferred to the *x*-axis and the length of \overline{AD} has been transferred to the *y*-axis.

Construct perpendicular lines to the *x*- and *y*-axes through their respective points. Change the **Attributes** of the lines so they appear dotted, and mark their intersection as point G.

Watch the path of point *G* as you drag point *B* around the circle. Then use the **Locus** tool to display this path. Label point *G* with its coordinates using the **Coordinates and Equations** tool.

- 4. What is true about \overline{BC} and \overline{AD} when *G* coincides with the *y*-intercept of the locus? With the *x*-intercept?
- 5. As point *G* moves from left to right, what happens to its *y*-coordinate?
- 6. What does this mean in terms of \overline{BC} ?

Problem 2 – Investigating congruent chords

On page 2.2, draw a second chord of circle A, \overline{HJ} . Then construct a segment from A to the midpoint, K, of \overline{HJ} . Measure the lengths of \overline{HJ} and \overline{AK} . Drag H or J around the circle, and try to make the lengths of \overline{HJ} and \overline{BC} equal.

7. What is the relationship between congruent chords of a circle and their respective distances from the center of the circle?

Problem 3 – Extension

A diagram similar to the one on page 1.7 may be found on page 3.2. Measure the radius of the circle and store itas the variable **rad**. Write and graph the equation, in terms of **rad**, of an ellipse that matches the locus.