\qquad
\qquad

Problem 1 - Relationship between a chord an its perpendicular bisector
Circle A is shown on page 1.3. $\overline{B C}$ is a chord of the circle, and point D is the midpoint of $\overline{B C}$. The perpendicular bisector of $\overline{B C}$ is also shown. Drag point B around the circle.

1. What is true about the perpendicular bisector of $\overline{B C}$?

Hide the perpendicular bisector, $\overrightarrow{A D}$, and use the Segment tool to draw $\overrightarrow{A D}$. Then use the Length tool to display the lengths of $\overline{B C}$ and $\overline{A D}$. Double click on each text box and enter a label for the measurement. Drag point B around the circle.
2. How does the length of $\overline{B C}$ relate to that of $\overline{A D}$?
3. What happens to $\overline{B C}$ when point D coincides with point A (i.e., when $A D=0$)?

On page 1.7, the length of $\overline{B C}$ has been transferred to the x-axis and the length of $\overline{A D}$ has been transferred to the y-axis.

Construct perpendicular lines to the x - and y-axes through their respective points. Change the Attributes of the lines so they appear dotted, and mark their intersection as point G.
Watch the path of point G as you drag point B around the circle. Then use the Locus tool to display this path. Label point G with its coordinates using the Coordinates and Equations tool.
4. What is true about $\overline{B C}$ and $\overline{A D}$ when G coincides with the y-intercept of the locus? With the x-intercept?
5. As point G moves from left to right, what happens to its y-coordinate?
6. What does this mean in terms of $\overline{B C}$?

Problem 2 - Investigating congruent chords

On page 2.2, draw a second chord of circle $A, \overline{H J}$. Then construct a segment from A to the midpoint, K, of $\overline{H J}$. Measure the lengths of $\overline{H J}$ and $\overline{A K}$. Drag H or J around the circle, and try to make the lengths of $\overline{\mathrm{HJ}}$ and $\overline{B C}$ equal.
7. What is the relationship between congruent chords of a circle and their respective distances from the center of the circle?

Chords and Circles

Problem 3 - Extension

A diagram similar to the one on page 1.7 may be found on page 3.2. Measure the radius of the circle and store itas the variable rad. Write and graph the equation, in terms of rad, of an ellipse that matches the locus.

