Activity Overview

Through out history, mathematicians from Euclid to al-Kashi to Viète have derived various formulas to calculate the sides and angles of non-right (oblique) triangles. al-Kashi used these methods to find the angles between the stars back in the 15th century. Both the famous Laws of Sines and Cosines are used extensively in surveying, navigation, and other situations that require triangulation of non-right triangles. In this activity, students will explore the proofs of the Laws, investigate various cases where they are utilized, and apply them to solve problems.

Topic: Trigonometry

- Proofs of the Laws of Sines and Cosines
- Deriving algebraic solutions
- Applying the Laws of Sines and Cosine
- Right triangle trigonometry

Teacher Preparation and Notes

- This activity is designed for use in a precalculus classroom. Students should already be familiar with algebraic symbol manipulation, right triangle trigonometry, and properties of congruent triangles from Geometry.
- To download the student and solution TI-Nspire documents (.tns files) and the student worksheet, go to education.ti.com/exchange and enter "9849" in the quick search box.

Associated Materials

- LawSineCosine_Student.doc
- LawSineCosine.tns
- LawSineCosine_Soln.tns

Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the quick search box.

- Sine. It's the Law. (TI-Nspire technology) - 11852
- Ain't No River Wide Enough (TI-Nspire technology) - 9886
- From 0 to 180: Rethinking the Cosine Law with Data (TI-Nspire technology) - 9833

Problem 1 - Review of Geometry

The first problem is an introduction to the activity. On pages 1.2-1.3, students are provided with historical information about the Laws of Sines and Cosines. They are also asked to recall from Geometry what SAS, ASA, SAA, SAS, SSS, and SSA mean and which one does not always work. This is an opportunity for a review of triangle congruency and class discussion. Page 1.5 outlines the specific cases of when the Laws of Sines and Cosines are applied.

Problem 2 - Proof of the Law of Sines

Pages 2.1-2.3 cover the proof of the Law of Sines. The proof involves using right triangle trigonometry.

The angle C refers to the angle $A C D$.

On page 2.3, students are instructed to grab and drag point C such that the obtuse triangle becomes a right triangle and then an acute triangle.

Students are asked if the Law of Sines still holds true. (yes because h is always the height of the triangle no matter what its shape)

To find the side lengths and angles of various oblique triangles, we need three pieces of information. There are four cases of triangles that you will investigate:

Case 1: ASA (Law of Sines)
Case 2: SAA (Law of Sines)
Case 3: SAS (Law of Cosines)
Case 4: SSS (Law of Cosines)

Move point C so that it is an acute angle. Does the Law of Sines still hold true? Explain.

Case 1 (ASA): The sum of the three angles equals 180°.

Problem 4 - Law of Sines Problem

On page 4.1, students are given the following problem: A surveyor took two angle measurements to the peak of the mountain 500m apart. What is the height of the mountain?

Students can see a picture (not to scale) of the problem on the next page. To solve the problem, they can either use the Calculate tool or insert a Calculator page.
Cright refers to the angle 51.1° and Cleft is the supplementary angle of Cright.

Solution: 1646.28 m

Problem 5 - Proof of the Law of Cosines

Using the same triangle as the Law of Sines, students explore the proof of the Law of Cosines on pages 5.15.3.

Again, the angle C refers to the angle $A C D$.
Note: The reduction formula $\cos (\theta)=-\cos (\pi-\theta)$ is used to obtain $\cos (C)=-\frac{e}{b}$.

Students are asked to use algebra to complete the proof:
(A) $c^{2}=(a+e)^{2}+h^{2}$
$c^{2}=a^{2}+2 a e+e^{2}+h^{2}$
(B) $h^{2}=b^{2}-e^{2}$

$$
e=-b \cdot \cos (C)
$$

(C) $c^{2}=a^{2}+2 a e+e^{2}+b^{2}-e^{2}$
$c^{2}=a^{2}+2 a e+b^{2}$
$c^{2}=a^{2}+2 a(-b \cdot \cos (C))+b^{2}$
$c^{2}=a^{2}+b^{2}-2 a b \cdot \cos (C)$
Students are told that they can prove the other two parts of the Law of Cosines is a similar manner. You may want to discuss with them how to do so.

Now for you to do some algebra:
(A) Substitute $\mathbf{1}$ into $\mathbf{2}$ and simplify
(B) Solve $\mathbf{3}$ for h^{2} and $\mathbf{4}$ for e
(C) Substitute the results from \mathbf{B} into \mathbf{A}

Students are instructed to grab point C again and move the triangle to a right triangle and then an acute triangle.
They are asked: Does the Law of Cosines hold true for all oblique triangles? (yes)

Move point C so that it is an acute angle. Does the Law of Cosines hold true?

Case 3 (SAS): The sum of the three angles equals 180°.
$c=\sqrt{a^{2}+b^{2}-2 \cdot a \cdot b \cdot \cos (c)}=7.3$

On page 6.5, students will find the measure of angle C. They will need to use the inverse cosine function to calculate the angle.

To verify the angle, students should use the Angle tool from the Measurement menu.

Problem 6 - SAS and SSS Cases

On page 6.2, students will use the Law of Cosines to find the length of side c. They will need to use the Calculate tool from the Actions menu and then select the formula already displayed on the screen.

Students can use the Length tool to verify their calculation of side c. They should then move point C to see if the measurement and calculation stays the same or changes.

