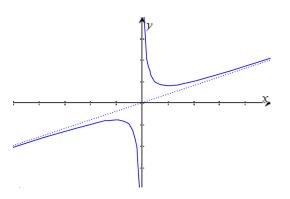
Functions & Graphs Test 2A

Name:

9 10 11 12

Question: 1

A possible equation for the graph of the curve shown is:


a)
$$y = \frac{ax^2 + b}{x}$$
, $a > 0$ and $b > 0$

b)
$$y = \frac{ax^2 + b}{x}$$
, $a < 0$ and $b < 0$

c)
$$y = \frac{ax^2 + b}{x}$$
, $a < 0$ and $b > 0$

d)
$$y = \frac{ax^3 + b}{x^2}$$
, $a > 0$ and $b > 0$

e)
$$y = \frac{ax^3 + b}{x^2}$$
, $a < 0$ and $b < 0$

Question: 2

Which one of the following functions does **not** have range: $[-\pi, \pi]$

a)
$$y = \left| x - \frac{\pi}{2} \right| - \left| x + \frac{\pi}{2} \right|$$

b)
$$y = 2\sin^{-1}(x)$$

c)
$$y = 2\sin^{-1}(x-2)$$

d)
$$y = \tan^{-1}(x)$$

e)
$$y = 2\cos^{-1}(x) - \pi$$

Question: 3

y = f(x) has a local maximum at (2,-4), the function $y = \frac{1}{f(x)}$ will have:

- a local maximum at (2,4)
- b) a local maximum at $\left(2, -\frac{1}{4}\right)$
- a local minimum at (2,4)
- d) a local minimum at $\left(2, -\frac{1}{4}\right)$
- a local minimum $\left(\frac{1}{2}, -\frac{1}{4}\right)$

Question: 4

The graph y = cosec(2x) has asymptotes:

a)
$$x = n\pi$$

b)
$$x = 2n\pi$$

b)
$$x = 2n\pi$$
 c) $x = \frac{2(n-1)\pi}{4}$ d) $x = \frac{n\pi}{4}$ e) $x = \frac{n\pi}{2}$

d)
$$x = \frac{n\pi}{4}$$

e)
$$x = \frac{n\pi}{2}$$

Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question: 5

The graph of $y = \frac{1}{2a^2 + ax - x^2}$ where a is a non-zero real constant, has asymptotes at:

a)
$$x = 2a$$
 only

b)
$$x = -a$$
 only

c)
$$x = a$$
 and $x = -2a$ only

d)
$$x = -a$$
 and $x = 2a$ only

e)
$$x = -a$$
, $x = 2a$ and $y = 0$.

Question: 6

The graph of $y = 2 \tan^{-1} \left(\frac{x}{2} \right)$ has asymptotes at

a)
$$x = \pm 2$$

b)
$$y = \pm 2$$

$$x = \pm 2$$
 b) $y = \pm 2$ c) $x = \pm \frac{\pi}{2}$ d) $y = \pm \frac{\pi}{2}$ e) $y = \pm \pi$

d)
$$y = \pm \frac{\pi}{2}$$

e)
$$y = \pm \pi$$

Question: 7

Given $f(x) = (x-a)^2(x+a)^2$, $g(x) = \frac{1}{f(x)}$ and a > 1 which statement is **not** true:

a)
$$f'(0) = 0$$

b)
$$f'(a) = 0$$

c)
$$g'(0) = 0$$

d)
$$g'(a) = 0$$

a)
$$f'(0) = 0$$
 b) $f'(a) = 0$ c) $g'(0) = 0$ d) $g'(a) = 0$ e) $0 < g(0) < 1$

Question: 8

If $f(x) = \frac{ax^2 + bx + c}{x + 5}$ has an asymptote y = 2x - 4 then

a)
$$a = 2$$

 $b = 5$
b) $a = 2$
 $b = -5$
c) $a = 2$
 $b = 6$
d) $a = -2$
 $b = 4$
e) $a = 2$
 $b = -4$

b)
$$a=2$$

c)
$$a=2$$

 $b=6$

$$a = -2$$
d) $b = 4$

$$a = 2$$

Question: 9

If $f(x) = \frac{1}{x^2 + hx + c}$ has two asymptotes of the form x = m and x = n then it follows:

a)
$$b > 2\sqrt{c}$$
 or
 $b < -2\sqrt{c}$ b) $b > c$ c) $b < c$ d) $b < -2c$ e) $b > 2c$

b)
$$b > c$$

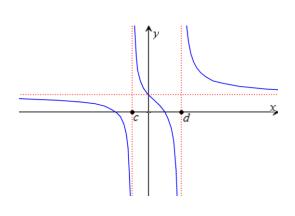
c)
$$b < c$$

$$d) \qquad b < -2c$$

e)
$$b > 2c$$

Question: 10

Given $a \neq b \neq c \neq d \neq 0$, a possible equation for the graph shown is:


a)
$$y = \frac{(x+a)(x-b)}{(x+c)(x-d)}$$

b)
$$y = \frac{(x-a)(x-b)}{(x-c)(x-d)}$$

c)
$$y = \frac{(x+a)^2(x+b)}{(x-c)(x-d)}$$

d)
$$y = -x^3 + \frac{1}{(x-c)(x-d)} + 1$$

e)
$$y = \frac{a(x+b)}{(x+c)(x-d)}$$

Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.