\qquad
\qquad

Problem 1 - $f(x) \rightarrow f(x-h)$

1. The graph of $f(x-2)$ is just like the graph of $f(x)$ but the graph has been shifted...2 units up $\square 2$ units left2 units down2 units right
2. Prediction of how $f(x+5)$ compares to $f(x)$: The graph will shift...5 units up 5 units left5 units down5 units right
3. How accurate was your prediction regarding the graph of $f(x-5)$?
4. In general, the transformation of $f(x) \rightarrow \boldsymbol{f}(\boldsymbol{x}-\boldsymbol{h})$ shifts the graph...$\square h$ units horizontally \square h units vertically
5. This is because the \qquad are affected.x-values/inputs
$\square y$-values/outputs

Problem 2-f(x) $\rightarrow f(x)+\boldsymbol{k}$
6. The graph of $f(x)+4$ is just like $f(x)$ but the graph has been shifted...4 units up
$\square 4$ units left4 units down4 units right
7. The graph of $f(x)-3$ is just like $f(x)$ but the graph has been shifted...up 3 units
\square left 3 unitsdown 3 unitsright 3 units
8. In general, the transformation of $f(x) \rightarrow \boldsymbol{f}(\boldsymbol{x})+\boldsymbol{k}$ shifts the graph...
\square $\square k$ units horizontallyk units vertically
9. This is because the \qquad are affected.\square-values/inputsy-values/outputs

Problem $3-f(x) \rightarrow f(x-h)+\boldsymbol{k}$
10. Consider the graph of $f(x-7)+6$ as compared to the graph of $f(x)$. This graph will be shifted...
$\square 7$ units left, 6 units up \square units left, 6 units down7 units right, 6 units down7 units right, 6 units up
11. How accurate was your prediction for the graph of $f(x-7)+6$?
12. In general, the graph of $\boldsymbol{f}(\boldsymbol{x} \boldsymbol{- h})+\boldsymbol{k}, \boldsymbol{h}$ and k are positive, as compared to the parent function graph $f(x)$, is shifted...h units left and k units uph units right and k units uph units left and k units downh units right and k units down
13. Explain how the graph shifts when (1) h and k are negative, (2) h is positive and k is negative, and (3) h is negative and k is positive.

Problem 4-f(x) $\rightarrow \boldsymbol{a} \cdot f(x)$

14. The graph of $0.5 \cdot f(x)$ as compared to the parent function, $f(x)$ appears...wider
\square narrower
15. The graph of $2 \cdot f(x)$ as compared to $f(x)$ is...wider/stretched verticallywider/compressed verticallynarrower/stretched verticallynarrower/compressed vertically
16. When $0<|a|<1$, the graph of $\boldsymbol{a} \cdot \boldsymbol{f}(\boldsymbol{x})$ is...
\square wider/stretched verticallywider/compressed verticallynarrower/stretched verticallynarrower/compressed vertically
17. When $|a|>1$, the graph of $\boldsymbol{a} \cdot \boldsymbol{f}(\boldsymbol{x})$ is...wider/stretched verticallywider/compressed verticallynarrower/stretched verticallynarrower/compressed vertically
18. Describe the graph of $a \cdot f(x)$ when a is negative as compared to when a is positive.

Just Move It
Movelt.tns

Additional Exploration and Practice

1. Compare the graph of $f(x)=|x-6|$ to the graph of $f(x)=|x|$. What is the effect of the -6 inside the absolute value symbol?
2. Compare the graph of $f(x)=|x|-6$ to the graph of $f(x)=|x|$. What is the effect of the -6 outside the absolute value symbol?

3. Compare the graph of $f(x)=-|x|$ to the graph of $f(x)=|x|$. What is the effect of the negative sign in front of the absolute value symbol?
4. Compare the graph of $f(x)=5 \sin x$ to the graph of $f(x)=\sin x$. What is the effect of the 5 in front of \sin ? What part of the wave is impacted by this value?
5. What happens to the graph when you change the equation by putting a negative sign in front of 5 in $f(x)=5 \sin x$?

