\qquad
\qquad

Part 1 - Explore Integrating $\ln x$

Problem of the Day: $\int \ln x d x$.
One can quickly find the solution to the indefinite integral by entering in a CAS system. Do this now and complete the equation.

$$
\int \ln x d x=
$$

Yet, more important than the answer is how can we get it without the use of technology. List the techniques for integration that you know. Which technique will give a result similar to the one above?

Recall the formula for integration by parts: $\int u v^{\prime} d x=u v-\int v u^{\prime} d x$.
Make your choices for u and v^{\prime}, calculate u ' and v, and record the results below. Hint: when making your choice for u, remember the mnemonic device LIPET.

$$
\begin{aligned}
& \mathbf{L} \text { - log (or natural log) } \\
& \mathbf{I} \text { - inverse } \\
& \mathbf{P} \text { - polynomial } \\
& \mathbf{E} \text { - exponential } \\
& \mathbf{T} \text { - trigonometric } \\
& \\
& u= \\
& v^{\prime}= \\
& u^{\prime}= \\
&
\end{aligned}
$$

Complete the process obtaining the result we got before.

Check your answer by differentiating the result.

Finally, confirm your solution graphically. Graph $y=\ln (x)$ and your result. With a partner, discuss how the two graphs relate to each other.

Lin Logging In

Part 2 - Extension/Homework

Integrate each of the following. Show all work. Verify your answers using the handheld.

1. $\int \tan ^{-1} x d x$
2. $\int \ln (2 x) d x$
3. $\int x e^{x} d x$
4. $\int x^{2} e^{x} d x$
5. $\int x \sin x d x$
