Name \qquad
\qquad

Problem 1 - The Angle Bisector Theorem

1. What were the measures of the two angles created by your angle bisector ($\angle B A X$ and $\angle C A X$)?
2. Record some of the measurements from page 1.3 after moving point X :

Distance from X to side $\overrightarrow{A B}$	Distance from X to side $\overrightarrow{A C}$

3. Complete the conjecture:

Any point on the angle bisector of an angle is \qquad from the sides of the angle.

Problem 2 - One Angle Bisector in a Triangle

4. Record some of the measurements from page 2.2 after moving a vertex of $\triangle A B C$:

$\boldsymbol{A B}$	$\boldsymbol{A C}$	$\boldsymbol{B D}$	$\boldsymbol{C D}$

Angle Bisectors in a Triangle

5. Identify a pair of ratios that are equal. Drag a vertex of the triangle to confirm your conjecture.
\qquad
6. Use your proportion to find the missing values for each:

Problem 3 - One Angle Bisector and the Incenter of a Triangle
7. What is the value of the ratio $\frac{D I}{D G}$? What is the value of the ratio $\frac{D E+D F}{P}$?
8. What happens to these values when a vertex of the triangle is dragged?
9. Show the hidden angle bisector of $\angle E$ or $\angle F$. Confirm that your conjecture is true for this other bisector. Drag a vertex of the triangle and observe the results.

