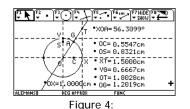

A Geometric Representation of Trigonometric Functions Using TI-92

By Steve Alemansour, Rancho Santiago Community College, Santa Ana, CA

Using similar triangles, a relationship is established between the 6 trigonometric functions of an angle and simple line segments. These relationships are then confirmed using line segment measurement capabilities of TI-92.



TI-92's measurement of the 6 line segments.

TI-92's calculation of the 6 trig functions. See Figure 2.

As point A is "dragged", measurements are updated.

		PrgmIO lease are.			
$\alpha = 56.309$ cos $\alpha = .55$					
sin α= .832					
	9999815797				
cot α=.660					
sec $\alpha = 1.80$ csc $\alpha = 1.20$					
csc α=1.20	9180087928				
ALEMANSO	DEG APPROX	FUNC 1/30			
Figure 5:					

New calculations based on measurements of Figure 4.

- 1. Construct a unit circle centered at the origin (OA= 1).
- At points X and Y, draw tangents to the circle parallel to x and y axes. ∠XOA = α is an angle in standard position with AC⊥OX and AS⊥OY, see Figure 1. Using similar triangles, we have:

$$\frac{AC}{OA} = \frac{OS}{1} = \sin(\alpha)$$

$$\frac{\partial C}{\partial A} = \partial C = \cos(\alpha)$$

$$\frac{XT}{OX} = \frac{AC}{OC} \Rightarrow XT = \frac{\sin(\alpha)}{\cos(\alpha)} = \tan(\alpha)$$

$$\frac{OT}{OA} = \frac{XT}{AC} \Rightarrow OT = \frac{\tan(\alpha)}{\sin(\alpha)} = \frac{1}{\cos(\alpha)} = \sec(\alpha)$$

$$\frac{YG}{OY} = \frac{AS}{OS} \Rightarrow YG = \frac{\cos(\alpha)}{\sin(\alpha)} = \cot(\alpha)$$

$$\frac{OG}{OA} = \frac{YG}{SA} \Rightarrow OG = \frac{\cot(\alpha)}{\cos(\alpha)} = \frac{1}{\sin(\alpha)} = \csc(\alpha)$$

- 3. In the geometry environment of TI-92 construct the diagram of Figure 1 and measure the length of the 6 line segments obtained in (1) through (6) as well as the measure of angle α . These measurements can be to any desired degree of accuracy as shown in Figure 2.
- 4. Next, using a simple program we calculate the 6 trigonometric functions of angle α as it was measured in Figure 2. Figure 3 shows the result of these calculations.
- 5. Complete agreement between measurements of Figure 2 and calculations of Figure 3 as it was predicted by the relationships (1) through (6).
- Now as we "drag" point A on the circumference of the circle, TI-92 continuously measures the new α as well as the 6 line segments. See Figure 4.
- 7. Figure 5 shows once again the result of the calculations of the trigonometric functions of new α and they are in complete agreement with the measurements of Figure 4.

continues on page back cover

Geometric Representation of Trigonometric Functions...

- 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1.	ra Calc Otra	PrgmIO Clear	art
	T *XOA=54.	cos α= .5	8123
s A	• 0C= 0.5; • 0S= 0.8	sin α= .8 812cm tan α= 1. 137cm cot α= .7	
	X • XT=1.4	000cm sec α= 1. 143cm ^{csc} α= 1.	7204
/ 0X=1, 000	OT= 1.7: OC= 1.2: DEG APPROX		

Figure 6: Split screen allows for simultaneous viewing.

continued from 9

- 8. Using split screen feature of TI-92, we can combine Figures 2 and 3 into a single screen for simultaneous viewing, See Figure 6.
- 9. If model of Figure 1 is superimposed on a Cartesian coordinate system, it is easy to see that line segments OC,OS, XT, and YG will take on negative quantities as points C, S, T, and G oscillate between the 4 quadrants. ◆

Eightysomething!

If you would like to subscribe, or if you know a friend or colleague who would like to receive a free subscription to *Eightysomething!*, just fill out this form and return it to: Eightysomething!, P.O. Box 650311, MS 3908, Dallas, TX 75265 or subscribe on-line at www.ti.com/calc/docs/80xthing.htm

Name (first)			(las	t)		
Address						
City				_ State		_ Zip
Γ						
Position:		Teacher	(Q)	Administrator	(X)	In-service Instructor
	(R)	Math Supervisor	(W)	College	(25)	Preservice Instructor
	(Y)	□ Science Supervisor				
Interests:	(S)	D PK-2	(U)	Grades 6-8	(W)	College
	(T)	Grades 3-5	(V)	Grades 9-12	(21)	CBL

□ I would like to receive It's About T.I.M.E., TI's newsletter for teachers of K-8 mathematics.

Subjects:	(6)	General Math	(3)	Chemistry	(5)	Biology
	(7)	Algebra	(1)	D Physics	(13)	General Science
	(8)	Geometry	(11)	Calculus	(12)	Engineering/Computer Science
	(9)	Precalculus/Trigonometry	(10)	Linear Algebra		
	(29)	□ AP Statistics	(28)	□ Statistics		

CL 1828

©1998 TI TM – Trademark of Texas Instruments Incorporated Printed in U.S.A.