$\qquad$
$\qquad$

## Problem 1 - Midpoints of Horizontal or Vertical Segments

On page 1.3, predict the coordinates of the midpoints of the segment.


Describe how you can predict the coordinates of the midpoint of a horizontal or vertical segment.

## Problem 2 - Midpoints of Diagonal Segments

On page 2.2, make a predication about the coordinates of the midpoint of the segment.


Describe how you can predict the coordinates of the midpoint of a diagonal segment.

## Apply The Math

What formula gives the midpoint of a segment with endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ ?

## Midpoints in the Coordinate Plane

Determine the midpoint of a segment with the following endpoints:

1. $(3,10)$ and $(5,10)$
2. $(1,8)$ and $(8,9)$
3. $(7,2)$ and $(4,4)$
4. $(-2,3)$ and $(5,-7)$
5. (1.8, 4.9) and (7.2, 2.7)
6. $(-3.3,5.5)$ and $(-5.5,3.3)$

Given an endpoint and midpoint of a segment, find the other endpoint:
7. Endpoint: $(3,1)$; Midpoint: $(3,4)$
8. Endpoint: $(2,5)$; Midpoint: $(5,6)$
9. Endpoint: $(-4,3)$; Midpoint: $(1,0)$

## Extension - Trisection Points

On page 3.2, segment $P Q$ has two trisection points, which divide $\overline{P Q}$ into 3 equal parts. Drag $P$ or $Q$ to change the segments location. Find the coordinates of the endpoints and then make a prediction about the coordinates of the trisection points.

Endpoints

(__,$\quad$ ) and $\left(\_, \quad, \quad\right)$
Predicted Trisection Points
 , $\qquad$ ) and ( $\qquad$ , __
$\qquad$ , $\quad$ )

Describe how you can predict the coordinates of the trisection points of a segment.

