Class \_\_\_\_\_

## **Problem 1 – Midpoints of Horizontal or Vertical Segments**

MidptCoordPlane.tns

On page 1.3, predict the coordinates of the midpoints of the segment.

| Endpoints   | Predicted Midpoint |
|-------------|--------------------|
| (,) and (,) | (,)                |
| (,) and (,) | (,)                |

Describe how you can predict the coordinates of the midpoint of a horizontal or vertical segment.

## **Problem 2 – Midpoints of Diagonal Segments**

On page 2.2, make a predication about the coordinates of the midpoint of the segment.

| Endpoints   | Predicted Midpoint |
|-------------|--------------------|
| (,) and (,) | (,)                |
| (,) and (,) | (,)                |

Describe how you can predict the coordinates of the midpoint of a diagonal segment.

## Apply The Math

What formula gives the midpoint of a segment with endpoints  $(x_1, y_1)$  and  $(x_2, y_2)$ ?



Determine the midpoint of a segment with the following endpoints:

- **1.** (3, 10) and (5, 10)
- **2.** (1, 8) and (8, 9)
- **3.** (7, 2) and (4, 4)
- **4.** (-2, 3) and (5, -7)
- **5.** (1.8, 4.9) and (7.2, 2.7)
- **6.** (-3.3, 5.5) and (-5.5, 3.3)

Given an endpoint and midpoint of a segment, find the other endpoint:

- 7. Endpoint: (3, 1); Midpoint: (3, 4)
- **8.** Endpoint: (2, 5); Midpoint: (5, 6)
- **9.** Endpoint: (-4, 3); Midpoint: (1, 0)

## **Extension – Trisection Points**

On page 3.2, segment PQ has two trisection points, which divide  $\overline{PQ}$  into 3 equal parts. Drag P or Q to change the segments location. Find the coordinates of the endpoints and then make a prediction about the coordinates of the trisection points.

| Endpoints     | Predicted Trisection Points |
|---------------|-----------------------------|
| (,) and (,)   | (,) and (,)                 |
| ( ,) and ( ,) | ( ,) and ( ,)               |

Describe how you can predict the coordinates of the trisection points of a segment.