ÎÎ.

Piecewise Functions, Continuity and Differentiability

Activity 2

NCTM Standards

- Connections Standard Recognize and apply mathematics in contexts outside of mathematics.
- Representation Standard Select, apply and translate among mathematical representations to solve problems

Materials

♦ TI-89

Topics in Calculus:

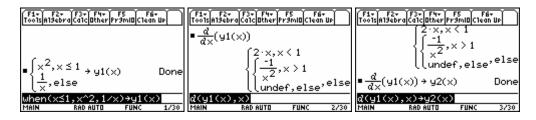
Functions and Equations, Derivatives, Limits and Continuity

Overview:

Students will examine the continuity and differentiability of piecewise functions.

Piecewise Functions, Continuity and Differentiability

Exercises:


potion given by
$$f(x) = \begin{cases} x^2, x \leq 1, \\ x \leq 1, \end{cases}$$

1. Consider the function given by f(x) = 1/x, x > 1.

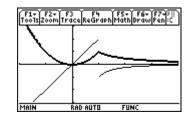
Graph f and its derivative, f'.

Solution:

Reproduce the following screens on your TI-89.

On the home screen use the **when** and **STO**>commands for the first condition of the piecewise function and store it in $y_1(x)$. Find the derivative of y_1 and store it in $y_2(x)$. **Note**: Nested **when** commands define the three-part rule for the derivative.

This derivative could also be entered as:

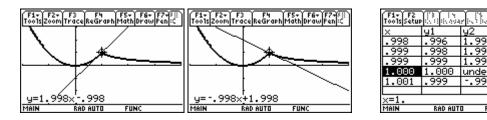

Define $y_2(x) = when(x<1,2x,when((x>1,-1/x^2,undef)))$.

Another method to define y_1 and y_2 is portrayed below in the Y= editor.

F1+ F2+ (3 84 8) - F3+ 80 ToolsZoom (3) - K0 - S(3, 8) - F3-	\square
-PLOTS $x^2, x \leq 1$	
$\frac{1}{\sqrt{2}}$, else	
$\sqrt{92=\frac{d}{dx}}(91(x))$	
u3= u2(x)=d(u1(x),x)	
MAIN RAD AUTO FUNC	

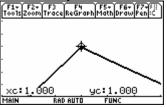
Since different graphing styles are allowed for each function, use the dot style for the graph of the derivative function with jump discontinuity and thick for the graph of y^1 .

F1+ F2+ (3 5) 5) ToolsZoom (3) / 6)	
$ \sqrt[s]{y1=} \begin{cases} x^2, x \le 1 \\ \frac{1}{x}, else \\ \sqrt{y2=} \frac{d}{dx} (y1(x)) \end{cases} $	xmin=-2. xmax=4. xscl=1. ymin=-3. ymax=3. yscl=1. xres=1.
y1(x)=when(x≤	1,×^2,1/×)
MAIN RAD AUT	D FUNC


2. Is y_1 continuous at x = 1?

Answer: Since $y_1(1) = 1$ and $\lim_{x \to 1} y_1(x) = 1$, $y_1(x) = 1$, $y_1(x) = 1$.

3. Is y1 differentiable at x = 1?


Solution:

Use the graph of the original function to explore the question of differentiability at x = 1. Draw the tangent lines at x = .999 and x = 1.001 to visualize the approximate values of the left and right hand derivatives at x = 1. Access the command by selecting **F5 (Math)**, **A: Tangent**. Type in the *x* value where the tangent line is to be drawn. Notice its equation in the bottom left hand corner of the screen. Look at the **TABLE**.

Alternatively, zoom in three times at the point (1, 1) and notice that a corner appears. This illustrates that the function is not locally linear, or differentiable, at x = 1.

FUNC

Additional Exercise:

Consider the function given by f(x) = |x|. Graph *f* and its derivative, *f'*. Is *f* continuous at x = 0? Is *f* differentiable at x = 0?