Movimento Vertical de Queda e Ressalto de uma bola

Autora : Fernanda Neri

TI-Nspire CX[™]

Palavras Chave: Energia Potencial; Energia Cinética; Energia Mecânica; Velocidade; Coeficiente de Restituição

Ficheiros associados: 5_Movimento vertical de queda e ressalto de uma bola.tns

1. Objetivos

1. Identificar transferências e transformações de energia no movimento vertical de queda e de ressalto de uma bola.

2. Construir e interpretar o gráfico da primeira altura de ressalto em função da altura de queda, traçar a reta que melhor se ajusta aos dados experimentais e obter a sua equação.

3. Prever, a partir da equação da reta de regressão, a altura do primeiro ressalto para uma altura de queda não medida.

4. Obter as expressões do módulo da velocidade de chegada ao solo e do módulo da velocidade inicial do primeiro ressalto, em função das respetivas alturas, a partir da conservação da energia mecânica.

5. Calcular, para uma dada altura de queda, a diminuição da energia mecânica na colisão, exprimindo essa diminuição em percentagem.

6. Associar uma maior diminuição de energia mecânica numa colisão à menor elasticidade do par de materiais em colisão.

7. Comparar energias dissipadas na colisão de uma mesma bola com diferentes superfícies, ou de bolas diferentes na mesma superfície, a partir dos declives das retas de regressão de gráficos da altura de ressalto em função da altura de queda.

2. Acompanhamento da atividade

Para visualizar um documento tns ou tnsp. Terá de ter instalado o software da TI Nspire. Poderá descarregar a versão TI Nspire Premium Teacher Software, através do link <u>https://education.ti.com/pt/forms/pt/seed</u>

 Na página 1.2 é apresentada uma simulação onde podemos verificar as transformações de energia que ocorrem quando um corpo está a cair quando sujeito apenas à força gravítica.

Nesta simulação foi usado um valor de $g = 9.8 \text{ m s}^{-2}$.

2) A página 1.3 é uma nota explicativa sobre a conservação da energia mecânica.

3) Na página 1.4 temos uma nova simulação onde podemos visualizar o movimento de corpos inelásticos e de corpos elásticos em situações similares à situação real e para situações ideais onde não exista resistência do ar.

I.2 1.3 1.4 ▶*5_AL 1.2ola GRAU GRAU SAU SAU	4 4 2 1.3 1.4 ► *5_AL 1.2_ola GRAU 🔒 🗙	【 1.2 1.3 1.4 ▶ *5_AL 1.2…ola GRAU 🗌 🗙
t=0.00s h=0.00m V=0.00m/s	t=0.00s h=0.00m V=0.00m/s	t=0.00s h=0.00m V=0.00m/s
Feather	Feather	C Feather
⊡ Basketball	🛃 Basketball	🗆 Basketball
□vacuum	of vacuum	o vacuum
$\stackrel{\triangle}{\nabla}$ Elasticity =0.80	⇔ Elasticity =0.80	Elasticity =0.00

© Texas Instruments 2021 / Fotocópia autorizada

- 4) A página 1.5 serve para clarificar que a força **Peso** é uma força com direção vertical e que independentemente da subida ou da descida tem sentido descendente.
- 5) Na página 1.7 são apresentados dados obtidos em laboratório numa atividade de queda e ressalto de uma bola com recurso a um CBR 2 e a uma calculadora gráfica TI Nspire CX (exp1, exp2 e exp3).

Nota: Pode criar um novo documento só com esta página e enviar para os alunos para que estes possam fazer o tratamento de resultados de um ou dos três ensaios.

Colocando o cursor sobre os máximos pode ver qual a altura de queda e construir uma tabela como a que está registada na página 1.8.

Para fazer o gráfico estatístico como o apresentado na página 1.9 faça etri docv 5 Adicionar Dados e Estatística.

Trace a reta de regressão que melhor se ajusta ao conjunto de dados.

menu 4 Analisar 6 Regressão 1 linear (mx + b)

Se o coeficiente de correlação não surgir faça menu 6 Definições e selecione Diagnóstico.

Pelo que podemos ver a equação da reta será $h(ressalto) = 0.78 \times h(queda) + 0.013$.

Para prever, a partir da equação da reta de regressão, a altura do primeiro ressalto para uma altura de queda não medida.

Abra uma página de gráficos **ctri docv** 2 Adicionar Gráficos

Coloque o cursor no editor de funções (se este estiver oculto faça **tab**) prima **var** e escolha **stat.regeqn**, dentro de parênteses coloque **x** ou copie a expressão diretamente para o editor.

Para analisar o gráfico faça menu 5 Traçar 1 Traçado do gráfico. Escolha um qualquer valor e faça esc . Depois, para saber a altura de queda para um valor de ressalto basta simplesmente fazer um duplo clique sobre as ordenadas e terá logo o valor das abcissas.

- 6) Na página 1.11 é feita a dedução da expressão e= $\sqrt{\frac{h_r}{h_q}}$
- 7) Na página 1.11 são apresentadas as deduções das expressões $v_{aproximação ao solo} = \sqrt{2gh_q}$ e

$$v_{
m afastamento\,do\,solo} = \sqrt{2gh_r}$$

8) Na página 1.13 é feito o cálculo da energia dissipada no movimento da bola num dos ensaios.

