[image: TI Logo] Computer Science with Python	  TI-INNOVATOR ROVER EXPLORATIONS
             TI-NSPIRE™ CX II TECHNOLOGY		STUDENT DOCUMENT – ACTIVITIES 5 AND 6
	TI-Innovator Rover Explorations
	 

	The TI-Innovator Rover can be used to learn simple and complex ideas in computer programming.  This suite of activities contains 8 activities.  Activity 6 is the only activity that requires completing the previous activity.  While they do not need to be completed in succession, each subsequent activity is more complex than the previous.
	Objectives:

	
	Programming Objectives:
· Use variables to store information.
· Use selection statements to make decisions.
· Use iteration to repeat code.
· Use functions to modularize code.
· Use lists to store related data.
· Use libraries and library functions.

		Key AP Computer Science Principles Standards:
· Represent a value with a variable (AAP-1.A)
· Represent a list or string using a variable (AAP-1.C)
· Write conditional Statements (AAP-2.H)
· Write nested conditionals (AAP-2.I)
· Select appropriate libraries or existing code segments to use in creating new programs (AAP-3 D)
· Write iteration statements (AAP-2.K)
	
· Write expressions that use list indexing and list procedures. (AAP-2.N)
· Write iteration statements to traverse a list. (AAP-2.O)
· Write statements to call procedures (AAP-3.A)
· Develop procedural abstractions to manage complexity in a program by writing procedures. (AAP-3 C)
· For generating random values, write expressions to generate possible values. (AAP-3 E)




	

	This document contains Activities 5 and 6 of the 8 total TI-Innovator Rover activities.

            Activity 5: Regular Polygons Revisited
                           Students will use loops to repeat code.
            Activity 6: Quiz Race 2 Slope 
                           Students will use the random integer function from the random library to generate random integers.
                           Students will use loops to repeat code.
                           Students will use selection statements to make decisions.
                           Students will use the eval() function to evaluate mathematical expressions from input.
                           Students will use the fabs() function to trouble shoot roundoff errors.
                           Students will fix a runtime error.







	Activity 5: Regular Polygons Revisited
Students will use loops to repeat code.

	1. Activity 4: Regular Polygons used the following selection to draw regular triangles, squares, pentagons, and hexagons. 
[bookmark: _GoBack]if length <=0:
  print("Invalid side length")
elif sides<3 or sides > 6:
  print("Invalid polygon choice")
elif sides==3:
  rv.forward(length)
  rv.left(120)
  rv.forward(length)
  rv.left(120)
  rv.forward(length)
elif sides==4:
  rv.forward(length)
  rv.left(90)
  rv.forward(length)
  rv.left(90)
  rv.forward(length)
  rv.left(90)
  rv.forward(length)
elif sides==5:
  rv.forward(length)
  rv.left(72)
  rv.forward(length)
  rv.left(72)
  rv.forward(length)
  rv.left(72)
  rv.forward(length)
  rv.left(72)
  rv.forward(length)
else:
  rv.forward(length)
  rv.left(60)
  rv.forward(length)
  rv.left(60)
  rv.forward(length)
  rv.left(60)
  rv.forward(length)
  rv.left(60)
  rv.forward(length)
  rv.left(60)
  rv.forward(length)

           That was A LOT of repetitive code.  How could you code more efficiently?  Let’s look for a pattern.  
           Complete the table below.
	Number of Sides
	# rv.forward commands
	Turn Angle

	3
	3
	120

	4
	4
	90

	5
	5
	72

	6
	

	

	7
	

	

	8
	

	

	N
	

	




	2. Look back over your table in step 1.  Notice, the number of sides match the number of times the TI-Innovator Rover drives forward.  You could use a loop to repeat this action.

The code
              for c in range(sides):
                  rv.forward(length)                 
will repeat the rv.forward(length) a total number of sides times.



If you use the relationship    
                turn angle = 



The code
               for c in range(sides):
                  rv.forward(length)
                  rv.left(360/sides)
will replace ALL the lines of code it took to draw the triangle, square, pentagon, and hexagon.  
It also lets you draw ANY regular polygon.



	3. Create a new program named “regPoly2”.

        Choose Rover Coding for the default type.


4. Ask the user for the number of sides.  Store the value as an integer in a variable named sides.


5. Ask the user for the length of a side.  Store the value as a double in a variable named length.


6. If the user enters an integer value less than 3 for the number of sides, display a massage that says “Invalid”.  Otherwise, add the three lines of code for the for loop in step 2 to draw the regular polygon.


7. Execute your code.  Debug any errors you find.




	Activity 6: Quiz Race 2 Slope 
Students will use the random integer function from the random library to generate random integers.
Students will use loops to repeat code.
Students will use selection statements to make decisions.
Students will use the eval() function to evaluate mathematical expressions from input.
Students will use the fabs() function to troubleshoot roudoff errors.
Students will fix a runtime error.

	1.  Create a new program named “quiz2”.

       Choose Rover Coding for the default type.

	[image: ]



	2. This first version of the game will ask the user for the number of practice questions.  

Since this number will be a value used for calculations, store it as a number.  Should you store the value as an integer or as a float?




	




	3. You will use a for loop to ask num random questions.
             
             Add the line:
                      for c in range(num):
                    

              Notice the next line is indented two spaces.  On the TI-Nspire CX II, two 
              diamonds illustrate the indentation.
	[image: ]


	4. Generate and display two random integers x1 and y1.  These values should be integers between -10 and 10.
	[image: ]




	5. Run your program on the TI-Innovator Rover.

You get the following runtime error:
              NameError: name ‘randint’ isn’t defined




Why did you get this error?






	






	6. To fix the runtime error, add the random library to the top of your code.

from random import *
	



	7. Execute your code. 

Enter 5 for the number of values.

Did you get five random pairs of numbers between -10 and 10?
	Sample Run:
[image: ]


	8. Remove the print statement. 
Generate random integer values between -10 and 10 for x2 and y2.
	



	9. What is the formula for calculating slope?






There is potential for a runtime error when the program is running.
Can you think of a scenario where calculating the slope would cause a runtime error?  





	

	10. Remember:        slope = 

If x1 equals x2 you will divide by zero.  This will cause a runtime error.  

To avoid this, you could add the lines:

         if x1 == x2:
              x1= randint(-10,10)


However, there is a chance, x1 could again match x2.
What is the probability x1 would match x2 again?







	

	11. To avoid this problem, use a while statement.  

While x1 matches x2, regenerate x1.






	



	12. Ask the user for the slope.  Make sure you display both points.  

Store the value as a float.  Make sure you use the eval() function so the user can enter the slope as a fraction.


**Hint: To display string and integer variables, don’t forget str().
For example “(“ + str(x) + “,”

	



	13. Run your code.

Enter 3 for the number of problems.

Does it generate a random pair of integers then wait for you to enter a slope?

Does it repeat this process two more times?

If you have any errors, fix them.

A sample run is provided on the right.  Your points will be different since the generator is selecting random integers.  The circled values are user input to advance to the next line.


	


	14. If the user’s slope equals the slope between the two points, the rover should drive forward. Otherwise, it should move back 0.25 meters and display the correct slope.

You could write:
        if slope == (y1-y2)/(x1-2):
             #move forward
        else:
             #move backward
             #display the correct answer


However, a roundoff error might erroneously evaluate to false.
Give an example of a slope that might lead to a roundoff error.

15. 




 

	

	16. To avoid a roundoff error, you will write the code:

if fabs(slope – (y1-y2)/(x1-x2)) < 0.0001:
        #move forward
else:
        #move backward
        Display the correct slope.


	




	17. Add the move forward / move backward code.




	








	18. Execute your code.

Try three problems.  Answer at least one correctly and one incorrectly.

Fix any errors.


A sample run is displayed on the right
.
The first problem was answered correctly.  The TI-Innovator Rover moved forward 0.5 meters.

The second question was answered incorrectly.  The TI-Innovator Rover moved backwards 0.25 meters.  The correct answer, -11/-4 was displayed.

The last question was answered correctly.  The TI-Innovator Rover moved forward 0.5 meters.


	






[image: ]

	19. You’re now ready for a race!  Challenge another group to a TI-Innovator Rover slope race.  Can you answer all the questions correctly before another group?



	

	20. Modify your game.

Instead of asking for the “Number of problems”, ask for the “Race Length”.


	

	21. Create a new variable named distance that starts at 0.


	

	22. Change the “for c in range(num):”

to a while loop.  While the distance traveled is less than the number entered, generate new questions.



	

	23. Lastly, if correct, add 0.5 to distance, otherwise subtract 0.25.


	

	24. Execute your program.  Answer at least one question incorrectly.
Does the program terminate when you have traveled the desired distance?



	



©2022 Texas Instruments Incorporated	4	education.ti.com
image2.png

image3.png


image4.png

image5.png

image6.png


image7.png


image8.png

image9.png


image10.png


image11.png


image12.png


image13.png


image14.png


image15.png

image16.jpeg

