Monday Night Calculus
Polar Equations

Exercises
1. Spiraling Under Control

. : . 26
Consider the curv€ given by the polar equation= — for 0 < 6 < 2x.
T

(a) Sketch the graph of the cunée and find an equation of the tangent line to the curve at the
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point wheref) = Tn
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Slope of the tangent line:
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Equation of the tangent liney = ( :



(b) Find the first value in the interval < 6 < 2x for which the tangent line to the curéeis
vertical.
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Solve Z—z = —(cosh —0Osinf) =0 = 6 =0.860334
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Check: X 0.839801 # 0
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The first value of in the intervald < 6 < 2z where the tangent line is vertical is
6 = 0.860334.

(c) The regionR is bounded by the curv€ and the line segment that connects the origin to
the point(x, y) = (4,0). Find the area of the regiaR.
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(d) Find the length of the curv€.
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2. Rabbit Ears (Bifolium)

Consider the curv€ defined by the polar equatiofif) = 12sinf cos 6 for0 < 6 < .

(a) Sketch the graph of the cunée. Find the polar coordinatgs, 6) of the point on the curve
in the first quadrant that is farthest from the origin.
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dr . .
= 12 [cosf - cos' 6 + sinf - 2 cosf(—sinb)|
= 12cosf [cos' 6 — 25sir’ 0]
dr dr . . .
0= 0 = 6 =0.61548 and 70 changes sign from positive to negative there.

The polar coordinates of the point in the first quadrant &stlirom the origin are
(4.6188,0.61548)

(b) Find an equation of the line tangent to the cu€rat the point found in part (a).

At 6 =0.61548:

d
x =3.77124, y =2.66667, and d_y = —1.41421
X

An equation of the tangent liney — 2.667 = —1.41421(x — 3.77124)
y
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(c) Find the total area enclosed by the cuéve
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3. An Infinity Curve
Consider the curv€ defined by the polar equation= 5+/c0s26.
(a) Sketch the graph of the cunée.
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r=>5+/cos(20)

(b) There are two horizontal lines tangent to the curve. Findaghimes and the values fér
0 < 6 < 2, at which they occur.
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The two horizontal lines arey = T\/_ and y = —T\/_



dr
c)Find lim — or explain why it does not exist.
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The numerator approaches and the denominator approaches 0 through small positive
values. Therefore the fraction decreases without bounapproaches-oo.
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(d) Find lim td or explain why it does not exist.
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(e) Find the total area enclosed by the cu€ve
Hint: Carefully consider the domain of

The curve is traced out in three pieces for value8 of three subintervals db, 2.

0 < 6 < —: top right quarter.
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. entire left loop.

< 0 < 2x: bottom right quarter.

By symmetry, we can find the entire area by taking twice tha afdhe left loop.
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