Tutorial Overview

In this tutorial, you will learn how to graphically solve a quadratic equation with the TI-Nspire ${ }^{\text {TM }} \mathrm{CX}$. Follow the steps below to solve problems, like the example below from the 2023 STAAR Algebra 1 Released Test (item 41):

Function k is defined as $k(x)=x^{2}+32 x+248$. What are the solutions to $k(x)=0$?

$$
\text { (A) } x=-16+2 \sqrt{2} \text { and } x=-16-2 \sqrt{2}
$$

(B) $x=16+2 \sqrt{2}$ and $x=16-2 \sqrt{2}$
(c) $x=-32+4 \sqrt{2}$ and $x=-32-4 \sqrt{2}$
(D) $x=32+4 \sqrt{2}$ and $x=32-4 \sqrt{2}$

Solving a Quadratic Equation using Graph Trace

Step 1: Create a Graphs application page.

Press 숑ㅇ, select 1 New Document, and 2 Add Graphs.

Step 2: Enter the quadratic equation.

The quadratic equation must be equal to zero to determine the solution(s) using Graph Trace. The example problem asks for the solutions when $k(x)=0$. This means the equation we will solve is: $0=x^{2}+32 x+248$.
Enter $x^{2}+\mathbf{3 2 x}+\mathbf{2 4 8}$ after $f 1(x)=$ and press enter to view the graph.

4 1.1 - *D	*Doc	$\left.{ }_{\text {deg }}^{\square}\right] \times$
$\square f 1(x)=x^{2}+32 x+248$:
1.		
	1	$\xrightarrow{\square 10}$

Solving a System of Equations using the Intersection Tool
Step 3：Adjust the viewing window to see the x－intercept（s）．

The x－intercepts are the solutions when the equation equals zero． If you do not see where the parabola of the quadratic equation intersects the x－axis，you will need to adjust the viewing window．

Press menu， 4 Window／Zoom，and 4 Zoom－Out．

\＆ 1 Actions	橉1 Window Settings．．．
速 2 View	O： 2 Zoom－Box
Ho 3 Graph Entry／E	Q 3 Zoom－In
Q 4 Window／Zool	Q 4 Zoom－Out
A 5 Trace	－ 5 Zoom－Standard
06 Analyze Grap	1Q 6 Zoom－Quadrant 1
\＃ 7 Table	¢， 7 Zoom－User
\％ 8 Geometry	－¢ 8 Zoom－Trig
\％ 9 Settings．．．	國 9 Zoom－Data
	A Zoom－Fit
－1．	\checkmark

Using the touchpad，mark the center by moving the cursor tool，筬，to the origin and press the center of the touchpad，蛋，or enter．

If you do not see the x－intercepts，keep zooming out by pressing enter．Press esc when you have reached a good viewing window to see the x－intercepts．

Step 4：Use Graph Trace to determine zeros．

An x－intercept is known as a zero of a function because they have ordered pairs with a y－value of zero． We can use the Graph Trace tool to locate the zeros of the graph．

Press menu， 5 Trace，and 1 Graph Trace．

The Graph Trace tool will start at the y－intercept． Press the \downarrow left arrow on the touchpad to move the cursor to the x－intercept．

Solving a System of Equations using the Intersection Tool

Stop when you see the word zero appear.
The first x-intercept is located at $(-13.2,0)$.

Keep pressing \varangle to see the second x-intercept. It is located at $(-18.8,0)$.

Step 5: Determine the correct answer to the question.
The x-values we are looking for in the answer choices are $x=-13.2$ and $x=-18.8$. We can eliminate answer choices that we know have positive values.

Function k is defined as $k(x)=x^{2}+32 x+248$. What are the solutions to $k(x)=0$?

$$
\begin{aligned}
& \text { (A) } x=-16+2 \sqrt{2} \text { and } x=-16-2 \sqrt{2} \\
& \text { (8) } x=\underset{\text { positive }}{16+2 \sqrt{2}} \text { and } x=16-2 \sqrt{2} \\
& \text { (C) } x=-32+4 \sqrt{2} \text { and } x=-32-4 \sqrt{2} \\
& \text { ©) } x=\underset{\text { positive }}{32}+4 \sqrt{2} \text { and } x=32-4 \sqrt{2}
\end{aligned}
$$

The remaining answer choices in the problem are not in decimal notation. We can use a calculator page to convert the choices to decimals.

Press ctri, docr , 1 Add Calculator.
Type in the values from answer choices A and C.
Answer choice A is correct because the x-values -13.2 and -18.8.

