Problem 1 – Normal Distribution and z-scores Questions

Given a normal distribution with mean 50 and standard deviation 5, answer the following questions.

1. What is the probability that a data point chosen at random will be between 45 and 55?

a. 10%

b. 50%

c. 68%

d. 100%

2. What is the probability that a data point chosen at random will be between 40 and 50?

a. 10%

b. 25%

c. 47.5%

d. 68%

3. Which of the following will contain approximately 95% of the data?

a. (50, 100)

b. (40, 50)

c. (40, 60)

(5, 100)

4. If 90% of the data for a normal curve must fall within an interval centered around the mean, what is the lower percentile?

a. 5th

b. 10th

c. 20th

d. 90th

5. If 95 of the data for a normal curve must fall within an interval centered around the mean, what are the percentile bounds?

a. (0, 95)

b. (2.5, 97.5) **c.** (3, 98)

d. (5, 100)

6. The z-score for the 10th percentile is -1.28. What percentile has a z-score of 1.28?

a. 60th

b. 75th

c. 90th

d. 99th

Problem 2 – Estimating the true mean

Goal: Use \overline{x} to estimate μ , where μ is a population mean and \bar{x} is a sample mean.

To calculate a confidence interval for the true mean of the population, follow Steps 1 to 5.

Margin of Error	Confidence Interval
$E = \mathbf{z}_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$	$\overline{x} - E < \mu < \overline{x} + E$

Step 1: Calculate \bar{x} of the sample.

Step 2: Find the critical value $z_{\alpha /}$ by using the **invNorm** command.

Step 3: Use the formula to calculate the margin of error.

Step 4: Calculate the confidence interval.

Step 5: Interpret the result in complete sentences.

A SRS of 40 receivers in a football league is given in list **LONG**. The standard deviation for longest reception of the population is known to be 20.39. Use this sample to estimate the mean for the longest run for all receivers with a confidence interval of 95%.

Homework

Use the data from the AVE, LONG, and YAC lists to answer each problem.

- The standard deviation (σ) of the average reception of all receivers is known to be 6.24.
- The standard deviation (σ) of the yards after completion of all receivers is known to be 3.8.
- **1.** Find the Error for the 90% confidence interval for the mean of the receivers' average reception.
- 2. Find the 90% confidence interval for the mean for the receivers' average reception.
- 3. Find the 95% confidence interval for the mean for the receivers' average reception.
- **4.** Find the 99% confidence interval for the mean for the receivers' long reception.
- **5.** Find the 95% confidence interval for the mean for the receivers' yards after completion (YAC).
- **6.** A population mean falls within the calculated interval always, sometimes, or never? Explain.