Open the TI-Nspire document *Transformations_Translations*.

When an object is shifted left, right, up, or down, we call the transformation a *translation*. In this lesson you will visualize what a triangle will look like when it is translated horizontally or vertically. Then, you will identify the properties of the object that are preserved in a translation and determine the coordinates of a triangle that is translated in the coordinate plane.

1.1 1.2 2.1 Transformations 🗢	₫[)
Transformations: Translations	
Grab and drag triangles and explore	
translations.	

Move to page 1.2.

- 1. a. Grab and drag the open circle to translate the triangle left seven units and down two units.
 - b. Complete the table below for the pre-image $\triangle ABC$ and the translated image $\triangle A'B'C'$.

	△ABC	<i>∆A'B'C</i> '
Side length	AB=	A'B' =
Angle measure	<i>m</i> ∠ <i>A</i> =	m∠A'
Side length	AC =	A'C' =
Area		
Perimeter		

- 2. Two figures are **congruent** if they have the same size and same shape. Is $\triangle ABC$ congruent to $\triangle A'B'C'$? Explain your reasoning.
- 3. Change the pre-image of the triangle by dragging one of its vertices and observe the changes in the translated image. Are the pre-image and image of the triangle congruent? Explain your reasoning.
- 4. An isometry is a transformation that produces an image that is congruent to the pre-image. Is transformation of an object using translation an isometry? Explain your reasoning.
- 5. If the clockwise order of the vertices of the image and the pre-image is the same, the figures are said to have the same orientation.
 - a. Do $\triangle ABC$ and $\triangle A'B'C'$ have the same orientation? Why or why not?
 - b. Does your answer to 5a depend on the location of the pre-image triangle?

Student Activity

- c. Does your answer to 5a depend on the direction or amount of translation?
- 6. Consider the properties of side length, angle measure, perimeter, area, and orientation. Which of these properties are preserved in a translation? Which are not preserved in a translation?

Move to page 2.1

7. a. If $\triangle ABC$ has vertices A(-3, 2), B(5, 4), and C(-1, 6), predict the coordinates of the vertices of $\triangle A'B'C'$ for each of the translations in the table below.

Translation	Coordinates of A'	Coordinates of B'	Coordinates of C'
△ABC is translated left 4 units			
△ABC is translated up 2 units			
△ABC is translated right 2 units and down 7 units			

- b. Grab and drag the open circle at *C* and perform each of the translations in question 7a. Verify or revise your predictions.
- 8. The coordinates of a point P are (x, y).
 - a. What are the coordinates of the new point, P', when P is translated 3 units to the right? $P(x, y) \rightarrow P'(\underline{\hspace{1cm}}, \underline{\hspace{1cm}})$

 - c. What are the coordinates of the new point, P, when P is translated up 5 units? $P(x, y) \rightarrow P'($ ______)

Transformations: Translations

Student Activity

- 9. Generalize your findings. If the coordinates of a point P are (x, y):
 - a. What are the coordinates of the new point, P', when P is translated h units to the right and v units up?

b. What are the coordinates of the new point, *P'*, when *P* is translated *h* units to the left and *v* units up?

$$P(x, y) \rightarrow P'(\underline{\hspace{1cm}}, \underline{\hspace{1cm}})$$

c. What are the coordinates of the new point, *P'*, when *P* is translated *h* units to the right and *v* units down?

$$P(x, y) \rightarrow P'(\underline{\hspace{1cm}}, \underline{\hspace{1cm}})$$

d. What are the coordinates of the new point, *P'*, when *P* is translated *h* units to the left and *v* units down?