Crossing the Asymptote
Teacher Notes

Math Objectives

－Students will test whether the graph of a given rational function crosses its horizontal asymptote．
－Students will examine the relationship among the coefficients of the polynomials in the numerator and denominator of various rational functions whose graph does or does not cross its asymptote．
－Students will use appropriate tools strategically（CCSS Mathematics Practice）．
－Students will look for and make use of structure（CCSS Mathematics Practice）．

Vocabulary

－rational function－horizontal asymptote－vertex

About the Lesson

－This lesson involves the graph of a rational function of the form $r(x)=\frac{p(x)}{q(x)}$ ．
－Note：Some portions of the activity require CAS functionality－TI－ Nspire CAS Required．
－As a result，students will：
－Discover conditions under which the graph of $y=r(x)$ does or does not cross its horizontal asymptote．The functions $p(x)$ and $q(x)$ are assumed to be linear or quadratic polynomials．
－Manipulate graphs of rational functions and their asymptotes to determine whether they intersect．
－Make conjectures about the relationship between the coefficients of the polynomials in the numerator and denominator of a rational function whose graph does or does not cross its horizontal asymptote．

TI－Nspire ${ }^{\text {TM }}$ Navigator ${ }^{\text {TM }}$ System

－Send out the Crossing＿The＿Asymptote．tns file．
－Monitor student progress using Class Capture．
－Use Live Presenter to spotlight student answers．

Activity Materials

－Compatible TI Technologies：TI－Nspire ${ }^{\text {TM }}$ CX Handhelds，

TI－Nspire ${ }^{\text {TM }}$ Apps for iPad®， \square TI－Nspire ${ }^{\text {TM }}$ Software

Crossing The Asymptote

If $p(x)$ and $q(x)$ are polynomials of degree 1 or 2 ，under what condition（s）does the graph of the rational function $\mathrm{h}(\mathrm{x})=\frac{p(x)}{q(x)}$ cross its horizontal asymptote？

Tech Tips：

－This activity includes screen captures taken from the TI－ Nspire CX handheld．It is also appropriate for use with the TI－Nspire family of products including TI－Nspire software and TI－Nspire App．Slight variations to these directions may be required if using other technologies besides the handheld．
－Watch for additional Tech Tips throughout the activity for the specific technology you are using．
－Access free tutorials at http：／／education．ti．com／calcula tors／pd／US／Online－

Learning／Tutorials

Lesson Materials：

Student Activity
－Crossing＿The＿Asymptote＿ Student．pdf
－Crossing＿The＿Asymptote＿ Student．doc

TI－Nspire document
－Crossing＿The＿ Asymptote．tns

Discussion Points and Possible Answers

Move to page 1.2.

1. Consider an example where when both $p(x)$ and $q(x)$ are linear:

$$
p(x)=a \cdot x+21.3, \quad q(x)=2 \cdot x+b \text { where } a \neq 0 .
$$

Set the value of the slider \mathbf{b} to -6 . Then scroll through the values of slider \mathbf{a} from -6 to 6 , and make \mathbf{a} note of the cases when the graph of $y=f 1(x)$ crosses its asymptote $y=f 2(x)$. Ignore $a=0$ since we are only considering values of $a \neq 0$. Set \mathbf{b} to -5 , and scroll through the values of a noting any cases where the graph crosses its asymptote. Repeat this process for values of \mathbf{b} from -6 to 6 . What pairs of values (if any) for \mathbf{a} and \mathbf{b} did you note?

Answer: There are no pairs of values (a, b). The graph of such a rational function never crosses its horizontal asymptote.

Tech Tip: If a student is unsure whether a graph of a given rational function crosses its horizontal asymptote, suggest that they zoom-in on the graph k times, check whether the graphs intersect, and then press "undo" k times to return to the original graph.

Tech Tip: Zoom out on the iPad app by pinching. Do the reverse to zoom in.

Move to page 1.3.

2. In general, make a conjecture about the sets of values (if any) of $\{c, d, e, f\}$ where the graph of the rational function
$f 3(x)=\frac{c^{*} x+d}{e^{*} x+f}$ crosses its horizontal asymptote
$f 4(x)=\frac{c}{e}$. [Assume $c \neq 0, e \neq 0$, and $e \cdot x+f$ is not a

multiple of $c \cdot x+d$.] Type your conjecture in the indicated space of Page 1.3.
Sample Answers: The graph of such a rational function never crosses its horizontal asymptote.

Teacher Tip: Ask students about the reasoning they used to reach their conjecture.

Ti-Nspire Navigator Opportunity: Quick Poll

See Note 1 at the end of this lesson.

Move to page 1.4.

3. Test your conjecture. The functions $f 3(x)$ and $f 4(x)$ have been defined. Enter solve $(f 3(x)=f 4(x), x)$. Does this result validate your conjecture? Why or why not? If your conjecture was not correct, revise it so the resulting statement
 is correct.

Answer: " solve $(f 3(x)=f 4(x), x)$ " gives the response " false" meaning this equation never has a solution so the graph of the rational function of this type never crosses its horizontal asymptote. Students can verify this claim algebraically by showing the equation $\frac{c^{*} x+d}{e^{*} x+f}=\frac{c}{e}$ is a contradiction since $d e \neq f c[e \cdot x+f$ is not a multiple of $c \cdot x+d$ is an assumption $]$.

Move to page 2.1.

4. Consider an example where when $p(x)$ is linear and $q(x)$ is quadratic:
$p(x)=a \cdot x+1.3 ; q(x)=2 \cdot x^{2}+b \cdot x+3.1$ where $a \neq 0$.

Set the value of the slider \mathbf{b} to -6 . Then scroll through the values of slider \mathbf{a} from -6 to 6 , and make a note of the cases when the graph of $y=f 1(x)$ crosses its asymptote, $y=f 2(x)$. Ignore $\mathbf{a}=0$ since we are only considering values of $a \neq 0$. Then set \mathbf{b} to -5 , and scroll through the values of noting any cases where the graph crosses its asymptote. Repeat this process for values of b from -6 to 6 . Describe the pairs of values of \mathbf{a} and \mathbf{b} that you noted.

Answer: All pairs of values (a,b) work. The graph of such a rational function always crosses its horizontal asymptote, $y=0$, at the point whose x-coordinate is the root of the linear polynomial in the numerator of the rational function.

Move to page 2.2.

5. In general, make a conjecture about the sets of values $\{c, d, e, g, h\}$ where the graph of the rational function $f 3(x)=\frac{c^{*} x+d}{e^{*} x^{2}+g^{*} x+h}$ does not cross its horizontal asymptote $f 4(x)=0$. [Assume $c \neq 0, e \neq 0$, and
 $e \cdot x^{2}+g \cdot x+h$ is not a multiple of $\left.c \cdot x+d\right]$

Type your conjecture in the indicated space on Page 2.2.

Sample Answers: There are no sets of values. The graph of such a rational function always crosses its horizontal asymptote, $y=0$, at the point whose x -coordinate is the root of the linear polynomial in the numerator of the rational function.

Teacher Tip: Ask students about the reasoning they used to reach their conjecture.

进 TI-Nspire Navigator Opportunity: Quick Poll

See Note 2 at the end of this lesson.

Move to page 2.3.

6. Test your conjecture. The functions $f 3(x)$ and $f 4(x)$ have been defined. Enter solve $(f 3(x)=f 4(x), x)$. Does this result validate your conjecture? Why or why not? If your conjecture was not correct, revise it so the resulting statement is correct.

Answer: " solve $(f 3(x)=f 4(x), x)$ " gives the response " $x=\frac{-d}{c}$ " meaning that the graph of such a rational function always crosses its horizontal asymptote, $y=0$, at the point whose x-coordinate is the root of the linear polynomial in the numerator of the rational function.

Move to page 3.1.

7. Consider an example where when both $p(x)$ and $q(x)$ are quadratic:

$$
\begin{gathered}
p(x)=a \cdot x^{2}+6 \cdot x+1.3 ; q(x)=2 \cdot x^{2}+b \cdot x-3.1 \\
\text { where } a \neq 0
\end{gathered}
$$

a. Set the value of the slider \mathbf{b} to -6 . Then scroll through the values of slider \mathbf{a} from -6 to 6 , and enter the value of \boldsymbol{a} (if one exists) when the graph of $y=f 1(x)$ does not cross its asymptote, $y=f 2(x)$, in the table. Ignore $\mathbf{a}=0$ since we are only considering values of $a \neq 0$. Then set \mathbf{b} to -5 , and scroll through the values of \mathbf{a}. Repeat this process for values of \mathbf{b} from -6 to 6 .

Hint: For a given value of \boldsymbol{b}, there is at most one value of \boldsymbol{a} for which the graph does not cross its asymptote.

Answer:

b	-6	-5	-4	-3	-2	-1	1	2	3	4	5	6
a	-2		-3	-4	-6	${ }^{*}$	${ }^{*}$	6	4	3		2

b. The boxes below -1 and 1 are blank. If the values of the sliders for \mathbf{a} and \mathbf{b} were not limited, what values would go in each of these two boxes?

Answer: These two entries would be -12 and 12.
c. Make a conjecture about the relationship between \boldsymbol{a} and \boldsymbol{b} that is true for the rational functions in this set whose graph does not cross its horizontal asymptote.

Answer: $a \cdot b=12$

Move to page 3.2.

8. In general, make a conjecture about the relationship between $\{c, d, g, h\}$ where the graph of the rational function $f 3(x)=\frac{c^{*} x^{2}+d^{*} x+e}{g^{*} x^{2}+h^{*} x+k}$ does not cross its horizontal asymptote $f 4(x)=\frac{c}{g}$. [Assume $c \neq 0, g \neq 0$ and

$g \cdot x^{2}+h \cdot x+k$ and $c \cdot x^{2}+d \cdot x+e$ do not have a common linear factor.].

Sample Answers: The graph does not cross its horizontal asymptote when $c \cdot h=d \cdot g$. This condition is a generalization of $a \cdot b=12$ from Question 7 .

Teacher Tip: Ask students about the reasoning they used to reach their conjecture.

TI-Nspire Navigator Opportunity: Quick Poll

See Note 3 at the end of this lesson.

Move to page 3.3.

9. Test your conjecture. The functions $f 3(x)$ and $f 4(x)$ have been defined. Enter solve $(f 3(x)=f 4(x), x)$. Does this result validate your conjecture? Why or why not? If your conjecture was not correct, revise it so the resulting statement is correct.

Answer: " solve $(f 3(x)=f 4(x), x)$ "gives
" $x=\frac{-(c k-e g)}{c h-d g}$ or $g \neq 0$ " meaning the equation does not have a solution, or, equivalently, the graph of such a rational function does not cross its horizontal asymptote if $c \cdot h-d \cdot g=0$ or $c \cdot h=d \cdot g$. This condition is the generalization of the condition $a \cdot b=2 \cdot 6=12$ from Question 8. The restriction $g \neq 0$ was an assumption.

Wrap Up

Upon completion of the discussion, the teacher should ensure that students are able to understand:

- The graph of a rational function may cross its horizontal asymptote and this phenomenon occurs more often than most people think.

Assessment

- Students could consider the extension of this question and determine which rational functions have graphs that cross their oblique asymptote if $\operatorname{deg} p(x)=\operatorname{deg} q(x)+1$.
- Students could consider the extension of this question about which rational functions with $\operatorname{deg} p(x)=\operatorname{deg} q(x)=3$ have graphs that are tangent to their horizontal asymptote.

\square TI-Nspire Navigator

Note 1

Question 2, Name of Feature: Quick Poll

Send the question on page 1.3 as a Quick Poll to share students' conjectures and generate class discussion about which ones are correct. Do this before students check their answer.

Note 2

Question 5, Name of Feature: Quick Poll

Use a Quick Poll for page 2.2 to share students' conjectures and generate class discussion about which ones are correct.

Note 3

Question 8, Name of Feature: Quick Poll
Use a Quick Poll for page 3.2 to share students' conjectures and generate class discussion about which ones are correct.

Crossing the Asymptote

This page intentionally left blank.

