TEACHER NOTES

Crossing the Asymptote

MATH NSPIRED

Math Objectives

- Students will test whether the graph of a given rational function crosses its horizontal asymptote.
- Students will examine the relationship among the coefficients of the polynomials in the numerator and denominator of various rational functions whose graph does or does not cross its asymptote.
- Students will use appropriate tools strategically (CCSS Mathematics Practice).
- Students will look for and make use of structure (CCSS Mathematics Practice).

Vocabulary

rational function
 • horizontal asymptote
 • vertex

About the Lesson

• This lesson involves the graph of a rational function of the form p(x)

$$r(x) = \frac{p(x)}{q(x)}$$

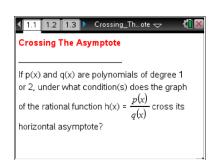
- Note: Some portions of the activity require CAS functionality TI-Nspire CAS Required.
- As a result, students will:
- Discover conditions under which the graph of y=r(x) does or does not cross its horizontal asymptote. The functions p(x) and q(x) are assumed to be linear or quadratic polynomials.
- Manipulate graphs of rational functions and their asymptotes to determine whether they intersect.
- Make conjectures about the relationship between the coefficients of the polynomials in the numerator and denominator of a rational function whose graph does or does not cross its horizontal asymptote.

II-Nspire™ Navigator™ System

- Send out the Crossing_The_Asymptote.tns file.
- Monitor student progress using Class Capture.
- Use Live Presenter to spotlight student answers.

Activity Materials

Compatible TI Technologies: III TI-Nspire™ CX Handhelds,
 TI-Nspire™ Apps for iPad®, II-Nspire™ Software



Tech Tips:

- This activity includes screen captures taken from the TI-Nspire CX handheld. It is also appropriate for use with the TI-Nspire family of products including TI-Nspire software and TI-Nspire App. Slight variations to these directions may be required if using other technologies besides the handheld.
- Watch for additional Tech Tips throughout the activity for the specific technology you are using.
- Access free tutorials at <u>http://education.ti.com/calcula</u> <u>tors/pd/US/Online-</u> <u>Learning/Tutorials</u>

Lesson Materials:

Student ActivityCrossing_The_Asymptote_

- Student.pdf
- Crossing_The_Asymptote_ Student.doc

TI-Nspire document

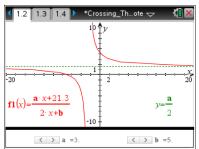
 Crossing_The_ Asymptote.tns

Discussion Points and Possible Answers

Move to page 1.2.

1. Consider an example where when both p(x) and q(x) are linear:

$$p(x) = a \cdot x + 21.3, \quad q(x) = 2 \cdot x + b$$
 where $a \neq 0$.



Set the value of the slider **b** to -6. Then scroll through the values of slider **a** from -6 to 6, and make a note of the cases when the graph of y = f1(x) crosses its asymptote y = f2(x). Ignore a = 0 since we are only considering values of $a \neq 0$. Set **b** to -5, and scroll through the values of **a** noting any cases where the graph crosses its asymptote. Repeat this process for values of **b** from -6 to 6. What pairs of values (if any) for **a** and **b** did you note?

<u>Answer</u>: There are no pairs of values (*a,b*). The graph of such a rational function never crosses its horizontal asymptote.

Tech Tip: If a student is unsure whether a graph of a given rational function crosses its horizontal asymptote, suggest that they zoom-in on the graph k times, check whether the graphs intersect, and then press "undo" k times to return to the original graph.

Tech Tip: Zoom out on the iPad app by pinching. Do the reverse to zoom in.

Move to page 1.3.

2. In general, make a conjecture about the sets of values (if any) of $\{c, d, e, f\}$ where the graph of the rational function

$$f3(x) = \frac{c^*x + d}{e^*x + f}$$
 crosses its horizontal asymptote

$$f4(x) = \frac{c}{e}$$
. [Assume $c \neq 0, e \neq 0$, and $e \cdot x + f$ is not a

multiple of $c \cdot x + d$.] Type your conjecture in the indicated space of Page 1.3.

Sample Answers: The graph of such a rational function never crosses its horizontal asymptote.

1.3
 1.4
 2.1
 •Crossing_Th_ote
 • (in the sets of values (if any))

 Make a conjecture about the sets of values (if any)
 of {c, d, c, f} where the graph of the rational function
$$f(x) = \frac{c \cdot x + d}{c \cdot x + f}$$
 crosses its horizontal asymptote of $y = \frac{c}{c}$

 Student: Type response here.

Teacher Tip: Ask students about the reasoning they used to reach their conjecture.

Example: TI-Nspire Navigator Opportunity: *Quick Poll* See Note 1 at the end of this lesson.

Move to page 1.4.

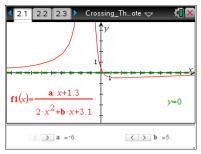
3. Test your conjecture. The functions f3(x) and f4(x) have been defined. Enter solve(f3(x) = f4(x), x). Does this result validate your conjecture? Why or why not? If your conjecture was not correct, revise it so the resulting statement is correct.

1.4 2.1 2.2 ▶ *Crossing_Thote →	<[] 🗙
Define $f\mathcal{F}(x) = \frac{c \cdot x + d}{e \cdot x + f}$	Done
Define $f\mathcal{A}(x) = \frac{c}{c}$	Done
©To test your conjecture, if you are u CAS, solve f3(x)=f4(x)	ısing
1	

Answer: "solve(f3(x) = f4(x), x)" gives the response "false" meaning this equation never has a solution so the graph of the rational function of this type never crosses its horizontal asymptote. Students can verify this claim algebraically by showing the equation $\frac{c^*x+d}{e^*x+f} = \frac{c}{e}$ is a contradiction since $de \neq fc$ [$e \cdot x + f$ is not a multiple of $c \cdot x + d$ is an assumption].

Move to page 2.1.

4. Consider an example where when p(x) is linear and q(x) is quadratic: $p(x) = a \cdot x + 1.3; q(x) = 2 \cdot x^2 + b \cdot x + 3.1$ where $a \neq 0$.



Set the value of the slider **b** to -6. Then scroll through the values of slider **a** from -6 to 6, and make a note of the cases when the graph of y = f1(x) crosses its asymptote, y = f2(x). Ignore **a** = 0 since we are only considering values of $a \neq 0$. Then set **b** to -5, and scroll through the values of noting any cases where the graph crosses its asymptote. Repeat this process for values of b from -6 to 6. Describe the pairs of values of **a** and **b** that you noted.

<u>Answer:</u> All pairs of values (a,b) work. The graph of such a rational function always crosses its horizontal asymptote, y = 0, at the point whose *x*-coordinate is the root of the linear polynomial in the numerator of the rational function.

Move to page 2.2.

5. In general, make a conjecture about the sets of values $\{c, d, e, g, h\}$ where the graph of the rational function

 $f3(x) = \frac{c^*x + d}{e^*x^2 + g^*x + h}$ does **not** cross its horizontal asymptote f4(x) = 0. [Assume $c \neq 0, e \neq 0$, and

 $e \cdot x^2 + g \cdot x + h$ is not a multiple of $c \cdot x + d$]

Type your conjecture in the indicated space on Page 2.2.

Sample Answers: There are no sets of values. The graph of such a rational function always crosses its horizontal asymptote, y = 0, at the point whose x-coordinate is the root

of the linear polynomial in the numerator of the rational function.

Teacher Tip: Ask students about the reasoning they used to reach their conjecture.

TI-Nspire Navigator Opportunity: *Quick Poll* See Note 2 at the end of this lesson.

Move to page 2.3.

6. Test your conjecture. The functions f3(x) and f4(x) have been defined. Enter solve(f3(x) = f4(x), x). Does this result validate your conjecture? Why or why not? If your conjecture was not correct, revise it so the resulting statement is correct.

<u>Answer:</u> "solve (f3(x) = f4(x), x)" gives the response " $x = \frac{-d}{c}$ " meaning that the graph of such a rational function always crosses its horizontal asymptote, y = 0, at the point whose x-coordinate is the root of the linear polynomial in the numerator of the rational function.

 <a>2.3 3.1 3.2 *Crossing_Thote 	(<mark>1</mark> 🗙
Define $f3(x) = \frac{c \cdot x + d}{e \cdot x^2 + f \cdot x + g}$	Done
Define <i>f4</i> (x)=0	Done

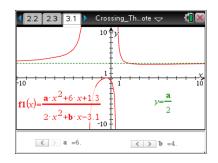
4	2.2	2.3	3.1 🕨	*Crossing_Thote 🗢	<u> (</u> X			
	Make a conjecture about the sets of values							
				e the graph of the rational				
f	function $f(x) = \frac{c \cdot x + d}{does \text{ NOT } cross its}$							
Ш	e·x ² +g·x+h							
	horizontal asymptote of $y = \frac{c}{c}$							
	e							
	Student: Type response here.							

Move to page 3.1.

 Consider an example where when both p(x) and q(x) are quadratic:

$$p(x) = a \cdot x^2 + 6 \cdot x + 1.3; \ q(x) = 2 \cdot x^2 + b \cdot x - 3.1$$

where $a \neq 0$.



a. Set the value of the slider **b** to -6. Then scroll through the values of slider **a** from -6 to 6, and enter the value of **a** (if one exists) when the graph of y = f1(x) does **not** cross its asymptote, y = f2(x), in the table. Ignore **a** = 0 since we are only considering values of $a \neq 0$. Then set **b** to -5, and scroll through the values of **a**. Repeat this process for values of **b** from -6 to 6.

Hint: For a given value of **b**, there is at most one value of **a** for which the graph does not cross its asymptote.

Answer:

b	-6	-5	-4	-3	-2	-1	1	2	3	4	5	6
а	-2		-3	-4	-6	*	*	6	4	3		2

b. The boxes below -1 and 1 are blank. If the values of the sliders for **a** and **b** were not limited, what values would go in each of these two boxes?

Answer: These two entries would be -12 and 12.

c. Make a conjecture about the relationship between *a* and *b* that is true for the rational functions in this set whose graph does **not** cross its horizontal asymptote.

Answer: $a \cdot b = 12$

Move to page 3.2.

8. In general, make a conjecture about the relationship between $\{c, d, g, h\}$ where the graph of the rational function

$$f3(x) = \frac{c * x^2 + d * x + e}{g * x^2 + h * x + k}$$
 does **not** cross its horizontal asymptote $f4(x) = \frac{c}{g}$. [Assume $c \neq 0, g \neq 0$ and

{c, d,	a conj <i>e,f</i> } \	ecture : where th c)= <u>c·x²</u>	*Crossing_Thote ↓ about the relationship betwee the graph of the rational ² +d·x+e ² +h·x+k	- 1
horizontal asymptote of $y = \frac{c}{g}$.				
Stud	ent: T	ype re	esponse here.	

Crossing the Asymptote

MATH NSPIRED

 $g \cdot x^2 + h \cdot x + k$ and $c \cdot x^2 + d \cdot x + e$ do not have a common linear factor.].

Sample Answers: The graph does **not** cross its horizontal asymptote **when** $c \cdot h = d \cdot g$. This condition is a generalization of $a \cdot b = 12$ from Question 7.

Teacher Tip: Ask students about the reasoning they used to reach their conjecture.

TI-Nspire Navigator Opportunity: *Quick Poll* See Note 3 at the end of this lesson.

Move to page 3.3.

9. Test your conjecture. The functions f3(x) and f4(x) have been defined. Enter solve(f3(x) = f4(x), x). Does this result validate your conjecture? Why or why not? If your conjecture was not correct, revise it so the resulting statement is correct.

<u>Answer:</u> "solve (f3(x) = f4(x), x) "gives

" $x = \frac{-(ck - eg)}{ch - dg}$ or $g \neq 0$ " meaning the equation does not

have a solution, or, equivalently, the graph of such a rational function does not cross its horizontal asymptote if $c \cdot h - d \cdot g = 0$ or $c \cdot h = d \cdot g$. This condition is the generalization of the condition $a \cdot b = 2.6 = 12$ from Question

8. The restriction $g \neq 0$ was an assumption.

 3.1 3.2 3.3 ► *Crossing_Th ote 	(<mark>1</mark> 🗙
Define $f3(x) = \frac{c \cdot x^2 + d \cdot x + e}{g \cdot x^2 + h \cdot x + k}$	Done
Define $f\mathcal{A}(x) = \frac{c}{g}$	Done
I	

Wrap Up

Upon completion of the discussion, the teacher should ensure that students are able to understand:

• The graph of a rational function may cross its horizontal asymptote and this phenomenon occurs more often than most people think.

Assessment

- Students could consider the extension of this question and determine which rational functions have graphs that cross their oblique asymptote if $\deg p(x) = \deg q(x) + 1$.
- Students could consider the extension of this question about which rational functions with $\deg p(x) = \deg q(x) = 3$ have graphs that are tangent to their horizontal asymptote.

II-Nspire Navigator

Note 1

Question 2, Name of Feature: Quick Poll

Send the question on page 1.3 as a Quick Poll to share students' conjectures and generate class discussion about which ones are correct. Do this before students check their answer.

Note 2

Question 5, Name of Feature: Quick Poll

Use a Quick Poll for page 2.2 to share students' conjectures and generate class discussion about which ones are correct.

Note 3

Question 8, Name of Feature: Quick Poll

Use a Quick Poll for page 3.2 to share students' conjectures and generate class discussion about which ones are correct.

Crossing the Asymptote MATH NSPIRED 1.3

This page intentionally left blank.