Are You Confident?

by - Dennis Ivany

Activity overview

Problem 1 - A Brief Review of the Normal Distribution. This is intended as a review only, and students should have had significant prior exposure to the concepts presented.

Problem 2 develops the meaning of a confidence interval. Included are some opportunities for students to visually explore confidence intervals. A sampling distribution of the sample mean for a known population is created and students can drag line segments representing 95\%, 90\%, and 99\% intervals to center them over various sample means for the population, thus getting a feel for when an interval captures the population mean.

Concepts

Normal Distribution
Random Sampling
Sampling Distribution of the Sample Mean
Confidence Intervals

Teacher preparation

It might be helpful for teachers to replicate the activity by placing a drawing of the sampling distribution of the sample mean for problem 2 on the wall. Sample means can be generated on the TI-Nspire using the mean(randNorm(command. Dots can be placed on sticky notes and placed on the sampling distribution of the sample mean, then string of appropriate length for each confidence interval can be centered over the sample means to see whether they capture the population mean.

Classroom management tips

It is best if students are familiar with the normal distribution prior to beginning problem 2. This would usually be accomplished in a prior course. The material in problem 1 is presented only as a refresher.

TI-Nspire Applications

Graphs and Geometry
Notes
Lists and Spreadsheets
by: Dennis Ivany
Grade level: secondary
Subject: Statistics Time required: 45 to 90 minutes

Materials: TI-Nspire

Step-by-step directions

Open the document stats_Confint_Ivany.
Use totr to move between slides
Read the first four slides.

1.1	1.2	1.3	1.4
RAD AUTO REAL			
Are You Confident?			
An introduction to Confidence intervals			
1.2 1.3	1.4	1.5	RAD AUTO REAL
Would you like to be able to predict how many students in your community like a new video game or a new song?			
How about predicting something like the			
average arm span for all sixteen year olds			
in Canada?			

\section*{| 1.2 | 1.3 | 1.4 | 1.5 |
| :--- | :--- | :--- | :--- |
| RAD AUTO REAL | | | |}

Statisticians are often interested in making predictions about what might happen or about certain characteristics of a population.

Usually, the populations are too large to survey, so they make predictions about the population based on a manageable sample.

\section*{| 1.2 | 1.3 | 1.4 | 1.5 |
| :--- | :--- | :--- | :--- |
| RAD AUTO REAL | | | |}

Statisticians are often interested in making predictions about what might happen or about certain characteristics of a population.

Usually, the populations are too large to survey, so they make predictions about the population based on a manageable sample.

The remaining slides up to 1.18 are intended as a refresher of the normal distribution. If you do not need them, go to slide 2.1 under Problem 2.

In a normal distribution, about 68% of the data lies within 1 standard deviation of the population mean.

| 1.4 | 1.5 | 1.6 | 1.7 | RAD AUTO REAL |
| :--- | :--- | :--- | :--- | :--- | :--- |

About 95\% of the data lies within about 2 standard deviations of the population mean (actually, it's closer to 1.96 than 2, but we'll use 2 for simplicity).

99.7% of the data lies within about 3 standard deviations of the population mean
by: Dennis Ivany
Grade level: secondary
Subject: Statistics Time required: 45 to 90 minutes

Materials: TI-Nspire
A summary of common intervals on a normal distribution.

Have students write down the mean and standard deviation before proceeding to the next slide.

The answer for the question will be found on the next slide.

Type your answer by the question.

Press
tab to move to the Answer line and press to see the answer.

Summary Diagram
$41.7 \mid 1.8$ 1.9 Prad Auto REAL
Now, let's apply this to a problem involving shoe sizes among the Canadian men. Let's assume we know that the mean shoe size is 10 , with a standard deviation of 1.5. We can label our normal distribution as follows:

What percent of the students had a shoe size between 7 \& 13, i.e. within two standard deviations of the population mean?
41.9 1.10 1.11 [1.12 PRAD AUTO REAL Question

What percent of the students had a shoe size between 7 and 13, i.e. within two standard deviations of the population mean?

Answer
by: Dennis Ivany
Grade level: secondary
Subject: Statistics
Time required: 45 to 90 minutes

Materials: TI-Nspire

A repeat of the earlier diagram to help you with the questions on the next slide.

Press
tab
to move to the Answer line and press

to see the answer.

Students should take note by copying the information on slides 1.16 and 1.17 into their notes.

4	1.12	1.13	1.14	1.15

Some other useful intervals:

90% of the data lies within 1.645 standard deviations of the population mean.

This is where the introduction to confidence intervals really begins.

99% of the data lies within 2.56 standard deviations of the population mean.

These two intervals will be useful in our next lesson, Confidence Intervals.

Go to Problem 2.

Introduction to Confidence Intervals

We all often make a best guess using estimation. For example, if you were asked, "About how many students are there in Canada?" you might say,
"Between about two million and three million." You did not say one particular number - instead, you gave a range that you hoped included the actual number. That is much like a confidence interval.

by: Dennis Ivany
Grade level: secondary
Subject: Statistics
Time required: 45 to 90 minutes
Materials: TI-Nspire

Write down this sample mean.

Your sample mean plotted in relation to the actual population.

Your competitor's sample mean.

In this case, both sample means are pretty close to the population mean.

by: Dennis Ivany
Grade level: secondary
Subject: Statistics
Time required: 45 to 90 minutes
Materials: TI-Nspire

Scrolling down through this spreadsheet will reveal the sample
means from the 100 stores.

Notice how this dot plot is shaped much like a normal distribution.

The next page shows the sample means as a dot plot tightly clustered around the population mean shoe size of 10 .

by: Dennis Ivany
Grade level: secondary
Subject: Statistics
Time required: 45 to 90 minutes
Materials: TI-Nspire

	The next page shows a histogram of the sample means. Notice that is centered on the population mean shoe size of 10 .
Press tab to move to the Answer line and press to see the answer.	
	Question
	Which best describes the shape of the histogram? $\begin{array}{ll}\text { A) Uniform } & \text { B) Bell }\end{array}$
	Answer 大
	(2.15 2.16 [2.17 [2.18 PRAD AUTO REAL
	Statisticians have determined that if we were able to repeat the sampling process an infinite number of times, the distribution of sample means would itself be normally distributed!
	So what?

by: Dennis Ivany
Grade level: secondary
Subject: Statistics
Time required: 45 to 90 minutes

Materials: TI-Nspire

by: Dennis Ivany
Grade level: secondary
Subject: Statistics
Time required: 45 to 90 minutes

Note: The height of a point above the x-axis has no relevance
and has been randomly assigned.

by: Dennis Ivany
Grade level: secondary
Subject: Statistics
Time required: 45 to 90 minutes
Materials: TI-Nspire

Place the hand on the line segment or on the open circle then
press
(m) and drag the line segment around.

Center it over a sample mean. Is the population mean of 10 captured within the interval between the lower and upper bounds of the line segment? Try to find all the sample means where the interval does NOT capture the population mean.

Press
tab to move to the Answer line and press see the answer.

by: Dennis Ivany
Grade level: secondary
Subject: Statistics
Time required: 45 to 90 minutes

Materials: TI-Nspire

Are you confident?
by: Dennis Ivany
Grade level: secondary
Subject: Statistics
Time required: 45 to 90 minutes
Materials: TI-Nspire
Notice how the 90% interval is shorter. We can expect that fewer intervals will capture the population mean than when we used 95% intervals.

Again, drag the line segment around. Take note of the locations where the interval does not capture the population mean.

The 99% interval is longer. It should capture the population mean when centered on 99 of every 100 sample means.

Assessment and evaluation

- Journal entry explaining what a confidence interval is.
- Use an "exit slip" - ask students to identify one or two key points they really understood or are still confused about. Each student must write about her/his key points on a slip of paper, or a form provided by the teacher, and pass it in before permission is granted to leave the classroom for the day.
- Have each student find ten of the 95\% confidence intervals in the activity (each student should determine her/his own particular ten and not deliberately try to use the same 10 as someone else), and write down the number of intervals that capture the population mean. Have the class find the average number intervals that capture the population mean. What percent of the time does an interval capture the population mean? (The answer should be close to 95%).

