

Problem 1 – Exact Probabilities

To calculate the probability of exactly r successes in p Bernoulli trials is ${}_{n}C_{r} \cdot p^{r}q^{n-r}$.

This formula only works in trials where there is a binomial distribution and the events are independent of each other.

On the calculator, use the Bernoulli formula to determine the probability that a packet of ten memory chips with an average of 2% defective chips has no defects.

In this case,
$$n = 10$$
, $r = 0$, $p = 0.02$, $q = 0.98$

•
$$P(0) =$$

Now, verify your calculations using the **Binomial Pdf** command. To access the command, press [2nd] [DISTR].

To calculate the probabilities of 1, 2, 3, 4, and 5 defective memory chips, enter 0 through 5 in list L1. Then highlight L2 and enter the formula binompdf(10, 0.02, L1). Press ENTER. The probabilities for the respective number of defective chips are displayed.

L1		L3	2
0			
12346			
3			
3			
			_
L2 =f	(10,.(32,Lı)

Use the **L3** and **L4** to find the probabilities of defective chips in a packet of 25 chips with an average of 2% defective and a packet of 10 chips with an average of 30% defective.

Enter the probabilities in the table at the right.

	n = 10	n = 25	<i>n</i> = 10
r	p = 0.02	p = 0.02	p = 0.3
0			
1			
2			
3			
4			
5			

 How does the distribution of probabilities for 30% defective compare to the distribution of 2% defective?

Problem 2 – Cumulative Probabilities

Let's explore the first example where memory chips were bought in packets of ten where 2% of the memory chips are defective on average. On home screen, calculate the probability that there are less than three defective memory chips.

Add together the probabilities of 0, 1, and 2 that were calculated in Problem 1.

• P(less than 3 defects) =

To verify your answer, use the **Binomial Cdf** command. To access this command, press [2nd] [DISTR].

binomodf(2)	10,.02,