Points, Lines, and Distance Student Activity

Name _____

Open the TI-Nspire document *Points_Lines_and_Distance.tns*.

How do you find the distance between a point and a line? In this activity, you will investigate the distance between two points, a point and a line, and two lines.

Move to page 1.2.

Press ctrl ▶ and ctrl ◀ to navigate through the lesson.

- 1. Grab and move point Q. What do you notice about the length of \overline{PQ} as it moves?
- 2. What is the same and what is different about \overline{PQ} and \overline{RS} ?
- 3. a. Grab and move point Q until point P coincides with point R. Record the measures of \overline{PQ} and \overline{RS} .
 - b. Grab and move point S. Will \overline{RS} ever be shorter than \overline{PQ} ? Why or why not?
- 4. Grab and move point *S* until it coincides with point *Q*. What is the measure of *ՀTSR*? How do you know?
- 5. What does \overline{PQ} represent?

The distance from a point to a line is the length of the segment from the point perpendicular to the line.

6. Explain why \overline{RS} is not always the distance from point R to line m.

Points, Lines, and Distance Student Activity

Name	
Class	

- 7. a. What has to be true for \overline{PQ} to be the distance from point Q to line n?
 - b. Grab and move the X on line m until \overline{PQ} is the distance from point Q to line n. What is true about lines m and n when \overline{PQ} is the distance from point Q to line n? How do you know?
- 8. Determine if the statements below are always (A), sometimes (S), or never (N) true. Provide an explanation for your answers. Move lines *m* and *n* and points *Q* and *S*, as necessary.

Statement	A, S, N	Explanation
The distance between lines m and n is constant.		
RS is the distance from point <i>R</i> to line <i>m</i> .		
When $m \parallel n$, \overline{PQ} is longer than \overline{RS} .		
If $m \parallel n$, the distance between lines m and n will		
be constant.		
If m is not parallel to n , \overline{PQ} is the distance		
between lines <i>m</i> and <i>n</i> .		
In a plane, if two lines are perpendicular to the		
same line, then they are parallel to each other.		