Points, Lines, and Distance Student Activity Name _____ Open the TI-Nspire document *Points_Lines_and_Distance.tns*. How do you find the distance between a point and a line? In this activity, you will investigate the distance between two points, a point and a line, and two lines. Move to page 1.2. Press ctrl ▶ and ctrl ◀ to navigate through the lesson. - 1. Grab and move point Q. What do you notice about the length of \overline{PQ} as it moves? - 2. What is the same and what is different about \overline{PQ} and \overline{RS} ? - 3. a. Grab and move point Q until point P coincides with point R. Record the measures of \overline{PQ} and \overline{RS} . - b. Grab and move point S. Will \overline{RS} ever be shorter than \overline{PQ} ? Why or why not? - 4. Grab and move point *S* until it coincides with point *Q*. What is the measure of *ՀTSR*? How do you know? - 5. What does \overline{PQ} represent? The distance from a point to a line is the length of the segment from the point perpendicular to the line. 6. Explain why \overline{RS} is not always the distance from point R to line m. ## Points, Lines, and Distance Student Activity | Name | | |-------|--| | Class | | - 7. a. What has to be true for \overline{PQ} to be the distance from point Q to line n? - b. Grab and move the X on line m until \overline{PQ} is the distance from point Q to line n. What is true about lines m and n when \overline{PQ} is the distance from point Q to line n? How do you know? - 8. Determine if the statements below are always (A), sometimes (S), or never (N) true. Provide an explanation for your answers. Move lines *m* and *n* and points *Q* and *S*, as necessary. | Statement | A, S, N | Explanation | |---|---------|-------------| | The distance between lines m and n is constant. | | | | RS is the distance from point <i>R</i> to line <i>m</i> . | | | | When $m \parallel n$, \overline{PQ} is longer than \overline{RS} . | | | | If $m \parallel n$, the distance between lines m and n will | | | | be constant. | | | | If m is not parallel to n , \overline{PQ} is the distance | | | | between lines <i>m</i> and <i>n</i> . | | | | In a plane, if two lines are perpendicular to the | | | | same line, then they are parallel to each other. | | |