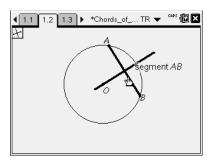

Open or create the TI-Nspire document *Chords_of_a_Circle.tns*.

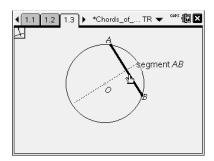
Students will explore the relationship between chords of a circle and their perpendicular bisectors. It is strongly suggested that the student create the document if possible.

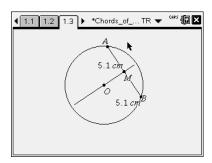


Move to page 1.2.

 \overline{AB} is a chord of circle O because its endpoints lie on the circle. Construct the perpendicular bisector of \overline{AB} by pressing **Menu** > **Construction** > **Perpendicular Bisector**. Click \overline{AB} and press [esc] to exit.

1. Drag point \overline{A} or \overline{B} . What do you observe about the perpendicular bisector of \overline{AB} ?

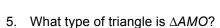

Press ctrl ▶ and ctrl ◀ to navigate through the lesson.

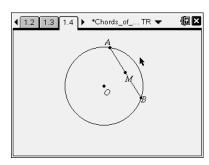


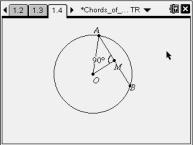
Move to page 1.3.

Construct a line through point O that is perpendicular to \overline{AB} . Press **Menu > Construction > Perpendicular**. Click point O, and then click \overline{AB} .

- Plot the intersection point of AB and the perpendicular line.
 Press Menu > Points & Lines > Intersection Point(s). Click AB and the line perpendicular to AB. Label this point M by immediately pressing shift M. Press esc to exit.
- Measure the lengths of AM and MB. Press Menu > Measurement > Length. Click point A, click point M, move the measurement to the inside of the circle close to the middle of AM, and press ♣. Then click point M, click point B, move the measurement to the inside of the circle close to the middle of MB, and press ♣. Then press ♠sc to exit.

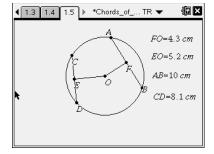



- 2. Drag point A or B. What is the relationship between \overline{AM} and \overline{MB} ?
- 3. When the length of \overline{AB} is as short as possible, what do you observe about \overline{OM} ?
- 4. When the length of \overline{AB} is as long as possible, what do you observe?


Move to page 1.4.

Construct the midpoint of \overline{AB} . Press **Menu > Construction > Midpoint**. Click \overline{AB} , and label this point M by immediately pressing $\widehat{\Phi}$ shift \widehat{M} . Press $\widehat{\Phi}$ to exit.

- Create OM by pressing Menu > Points & Lines > Segment.
 Click point O, and then click point M. Press esc to exit.
- Measure ∠AMO by pressing Menu > Measurement > Angle.
 Click point A, then click point M, and then click point O. Press
 esc to exit. Note: you may need to grab and move either the letter M or the 90°.
- Create radius AO by pressing Menu > Points & Lines >
 Segment. Click point A, and then click point O. Press esc to exit.


6. When given the lengths of any 2 sides of $\triangle AMO$, what equation can be used to find the length of the third side?

7. If AB = 6 and AO = 5, find the length of \overline{OM} .

Move to page 1.5.

Drag points A, B, and C until $\overline{FO} \cong \overline{EO}$.

8. What is the relationship between \overline{AB} and \overline{CD} ?

9. Drag points A, B, C, and D until $\overline{AB} \cong \overline{CD}$. What is the relationship between \overline{FO} and \overline{EO} ?