Ready, set....solve! You will create a fast-paced game to help practice solving multi-step equations. If the player's math skills are on point, they will out run the computer. Make too many mistakes, and the calculator will win the race. Your code will generate questions for the user to answer until either the user or the computer wins. Once there is a winner, the computer will display the race and declare a winner.

Objectives:

Programming Objectives:

- Use functions to generate strings and integers
- Use the randint() function to generate random integers.
- Use the TI-PlotLibrary library to plot points
- Use the sleep command from the Time library to animate the plot
- Use loops to repeat code
- Use if statements to make selections

Math Objectives:

- Practice solving multi-step equations.

Math Course Connections: This activity is recommended for Pre-Algebra or Algebra 1.

In this program, you will generate random equations in three different forms.

Form 1: Two-step equations such as: $3 x+8=14$ or $5 x-1=-16$
Form 2: Distribution equations such as $3(2 x-5)=-9$
Form 3: Distribution equations with an additional coefficient such as $-2(4 x-1)+2=4$

The program will ask a series of questions. If the user answers a question correctly, the user will "run" fast. If the user answers a question incorrect, they slow down. The computer answer runs each leg of the race using a random number generator.

Example 1:

Math Explorations with Python
 TI-84 CE Python Technology

1. The first step will be to create a python Random Simulation document.

Create a new python project named "race".

Select "Random Simulation" from the type menu.
2. You will need two more libraries, the TI Plot Library and Time library.

Place your cursor on the line below the from random import I
Fns > Modul > ti_plotlib > import ti_plotlib as plt

Fns $>$ Modul $>$ Time $>$ from time import *
3. The race game will generate various single variable equations to solve. The most basic form, will be of the form $a x+b=c$.

To help minimize code later, you will create a function definition.

Fns $>$ def function

Change the name of the function to ax_b. Leave the argument empty.
The "_" key is in the [a A \#].

FILE MANAGER
NEW PROGRAM
Name=RACE
Name=RACE $\underline{\theta}$

Allowed

- Up to 8 characters
- First character:A-Z
- Remaining characters: $\mathrm{A}-\mathrm{Z}$ 0-9

Random Simulation

Esc	Types	Ok

EDITOR: RACE

PROGRAM LINE 0011
\# Random Simulation
from random import 米
import ti_plotlib as plt
from time import w

| Fns... | a A \# | Tools | Run |
| :--- | :--- | :--- | :--- | Files

```
E) EDITOR: RACE
ProgramliNe 0005
# Random Simulation
from random import *
import ti_plotlib as plt
from time import *
def ax_b():
```

Fns... \mid a $\mathrm{A} \# \mid$ Tools \mid Run \mid Files

Math Explorations with Python

ti-84 CE Python Technology

4. This function generates equations in the form $\mathrm{ax}+\mathrm{b}=\mathrm{c}$.

You will generate random integer values for a, x, and b .
You will generate integers between -10 and 10 . If a is 0 , set $a=1$.
$\mathrm{a}=\operatorname{randint}(-10,10)$
if $a==0$:
$a=1$
$b=\operatorname{randint}(-10,10)$

Fns > Modul > random > randint
Fns $>\mathrm{Ctl}>$ if

Notice the diamond pattern in the example on the right. All lines that are in definition have indentation depths of at least two diamonds. This tells the computer the lines are part of the definition. The line $a=1$, needs to have 4 diamonds because this line is part of the definition AND it is part of the if statement.
**Hint: The tools menu, [zoom], contains both a copy line and a paste line command. This could be helpful when creating variables a, b and x .
5. The value of c is $a x+b$. Add the line

$$
c=a^{*} x+b
$$

In math, you can write $\mathrm{c}=\mathrm{ax}+\mathrm{b}$. However, in programming, this will cause an error. The compiler thinks $a x$ is a variable. You must type $c=a^{*} x+b$ so the compiler knows to multiply the variable a with the variable x .

```
EDITOR: RACE
PROGRAM LINE 0005
\# Random Simulation
from random import *
import ti_plotlib as plt
from time import *
def \(a x_{-} b():\)
- a=randint( \(-10,10\) )
\(\cdots\) if \(a==0\) :
\(\cdots a=1\)
\(\cdots b=r\) andint \((-10,10)\)
* \(x=\) randint \((-10,10)\)
Fns... \(\mid\) a A \#|Tools| Run \(\mid\) Files
```

```
    EDITOR: RACE
    PROGRAM LINE 0005
from random import *
import ti_plotlib as plt
from time import *
def ax_b():
    a=randint(-10,10)
    *if a==0:
**a=1
    b=randint (-10,10)
    x=randint(-10,10)
* c=a***b
    Fns... |a A #|Tools| Run [Files
```

					- \square
\cdots if $a==0$:					
$\cdots \cdot{ }^{*}{ }^{\text {a }}$					
$\cdots b=r a n d i n t(-10,10)$					
* x $=$ randint ($-10,10$)					
- c=awx+b					
- disp="x"					
\cdots if $a==-1$:					
```*elif a!=1: * .. disp=str(a)+"x"```					
Fns...	a A	\#	Tools	Run	Files

disp = "x"
if $\mathrm{a}==-1$ :

Math Explorations with Python
TI-84 CE Python Technology

```
 disp \(=\) "-x"
elif a != 1 :
\(\operatorname{disp}=\operatorname{str}(a)+\) " \(x\) "
```

Since $a$ is an integer and " $x$ " is a string, you must change the integer to a string before adding the two together using $\operatorname{str}(a)+$ " $x$ ".

Fns $>\mathrm{Ctl}>$ if
Fns $>\mathrm{CtI}>$ elif
Fns > Type > str
[2 ${ }^{\text {nd }] ~[m a t h] ~ h a s ~ b o t h ~ t h e ~}==$ and the !=
7. If $b$ is not $a 0$, $a d d b$ to the display.

If $b$ is positive, you need to add both a "+" and the string value of $b$.
If $b$ is negative, you only need to add the string value of $b$, this will also add the needed "-" sign by default.
if $b>0$ :
disp += "+" + str(b)
elif $b<0$ :
disp += $\operatorname{str}(b)$
*Make sure you used the += after display. You want to add to the existing display not replace it.
8. Lastly, return the disp, $x$, and $c$.
return disp, x, c

Fns > return
9. Let's try your function out.

Execute your program [Trace]

The screen will look blank. Press the [var] key and select ax_b
Or
Type ax_b().

```
 EDITOR: RACE
 PROGRAM LINE 0021
 c=a**+b
 -disp=""x"
 if a==-1:
 *.disp="-x"
 *lif a!=1:
 #. disp=str(a)+"x"
 if b>0:
 \cdots..disp+="+"+str(b)
 elif b<0:
 disp+=str(b)
|FFns... |a A # Tools/ Run FFiles
```


## EDITOR: RACE

PROGRAM LINE 0021
$c=a$ 米 $x+b$
disp="×"
if $a==-1$ :
-disp="-x"
elif $a!=1$ :
disp=str(a)+"x"
if $b>0$ :

- disp+="+"+str(b)
elif b<0:
*...disp+=str(b)
* return disp,x,c

Fns... |a A \#|Tools| Run |Files|

PYTHON SHELL

```
>>> # Shell Reinitialized
>> # Running RACE
>> from RACE import *
>>> ax_b(|)
```

Fns... 1 a A \#|Tools|Editor|Files

## Math Explorations with Python <br> ti-84 CE Python Technology

Press [enter]
The sample to the right displays:
$-9 x+2, \quad 3, \quad-25$

That means
$-9 x+2=-25 \ldots \ldots$. the value for $x$ should be 3 . Let's verify by substitution.

$$
\begin{aligned}
-9 * 3+2 & = \\
-27+2 & = \\
-25 & =-25
\end{aligned}
$$

Make sure your values work as well.
We successfully have a function to generate $a x+b, x, c$
10. Now that you have a function to generate $a x+b$, you can use this function to generate equations of the form $a x+b=c$ and $d(a x+b)=c$.

Let's write the first type.

Create a new function named t1

Fns > def function
11. Use the ax_b function to generate the left side of the equation, the $x$ and $c$.
disp, $\mathrm{x}, \mathrm{c}=\mathrm{ax} _\mathrm{b}()$
**Make sure you have commas between disp, x and c .
Did you place a () behind ax_b?
12. You need to add the " $=c$ " to the end of the display. $c$ is an integer, so you will need to change it to a string before you can add it to " $=$ ".
disp += "=" + str(c)

## EDITOR: RACE

PROGRAM LINE 0023

- disp="-x"
elif $a!=1$ :
$\cdots$...disp=str(a)+"x"
$\because$ if $b>0$ :
$\because \cdots$ disp+="+"+str(b)
$\because e l i f$ b<0:
-...disp+=str(b)
- return disp, $x$, c
def t1():
Fns...|a A \#|Tools| Run |Files

	I
*elif a! =1:	
$\cdots$...disp=str(a)+"x"	
$\cdots$ if $\mathrm{b}>0$ :	
- ...disp+="+"+st	
$\cdots$ - ${ }^{\text {chif }}$ b<0:	
disp+=str(b)	
- return disp,x,c	
def t1():	
- disp, $\times$, $\mathrm{c}=a \times \mathrm{l}$ ( $)$	
	Run Files
$\begin{aligned} & \text { CDITOR: RACE } \\ & \text { PROGRMLINE } 0026 \end{aligned}$	
$\cdots$-.. disp=str (a)+"x"	
- if $\mathrm{b}^{\text {co: }}$	
- $\because$ - disp+="+"+str(b)	
- elif b<0:	
$\cdots$ - ${ }^{\text {disp+}}$ +str $(\mathrm{b})$	
$\cdots$ - ${ }^{\text {return }}$ disp, $x$, $c$	
def t1():	
$\cdots$ disp, $\times, c=a \times _b()$	
Fns...\| ${ }_{\text {a }}$ A \#\|Tools	Run $\mid$ Files

## Math Explorations with Python TI-84 CE Python Technology

13. Now, return both the display and the $x$ value.
return disp, $x$

Ready Set...Solve!
Student Document

```
 EDITOR: RACE
 PROGRAM LINE 0028
 disp+="+"+str(b)
* elif b<0:
*..disp+=str(b)
*return disp,x,c
def t1():
* disp,x,c=ax_b()
* - disp+="="+str(c)
*return disp,x
|Fns... /a A #|Tools| Run /Files
```


(c) EDITOR: RACE
PROGRAM LINE 0030
... disp+=str(b)

* return disp,x,c
def t1():
- disp, $x, c=a \times _$()
- disp+="="+str(c)
- return disp,x
def t2():
    - disp, $x, c=a \times _$()

| Fns... | a A \#\|Tools | Run | Files |
| :--- | :--- | :--- | :--- | :--- |



Fns...	a $\mathrm{A} \#$	Tools	Run

16. This equation type will be of the form $\mathrm{d}(\mathrm{ax}+\mathrm{b})=\mathrm{c}$.

We want $d$ to be between $[2,10]$ or $[-10,-2]$

You will use an if..else statement to make this happen.
You will "flip a coin", if randint $(0,1)==0$, $d$ will be positive, otherwise $d$ will be negative.
if $\operatorname{randint}(0,1)==0$ :
$d=\operatorname{randint}(2,10)$
else:

$$
d=\operatorname{randint}(-10,-2)
$$

*Remember, randint is Fns > Modul> random > randint

## Math Explorations with Python

TI-84 CE Python Technology
17. Multiply the total by d and add it to the display:
$c=c^{*} d$
disp $=\operatorname{str}(\mathrm{d})+$ "(" $+\operatorname{disp}+$ ")=" + str(c)
18. Return both the display and $x$.
return disp, x
19. Using t2, you can easily make a t3 problem that looks like $d(a x+b)+e=c$.

Create a new function t3

```
PROGRAM LINE 0036
def t2():
* disp,x,c=ax_b()
..if randint(0,1)==0:
\cdots...d=randint(2,10)
*else:
....d=randint(-10,-2)
* c=c**
* disp=str(d)+"("+disp+")="+str(
 c)
|-
```

```
 EDITOR: RACE
 PROGRAM LTNE 003?
def t2():
 disp,x,c=ax_b()
 if randint(0,1)==0:
 \cdots.d=randint(2,10)
 else:
 |..d=randint(-10,-2)
 c=c*d
 disp=str(d)+"("+disp+")="+str(
 c)
*return disp,x
\begin{tabular}{|c|c|c|c|}
\hline Fns... & a \(\mathrm{A} \#\) & Tools & Run \\
\hline
\end{tabular}
```

(®) EDITOR: RACE
PROGRAM LTNE 0039
d=randint $(2,10)$
else:
d=randint $(-10,-2)$
c=c米d
disp=str(d)+"("+disp+")="+str(
c)

* return disp,x
def t3():

Fns...	a $\mathrm{A} \#$	Tools	Run	Files

```
 EDITOR: RACE
```

        PROGRAM LINE 0040
    - d=randint( \(-10,-2\) )
    - c=c米d
-disp=str(d)+"("+disp+")="+str(
c)
*return disp,x
def t3():
- disp, $x=t 2$ ()



## Math Explorations with Python <br> TI-84 CE Python Technology

21. Currently display contains $d(a x+b)=c$.

You need to break this apart into the left display and the value on the right. Then, you can generate a number, e, and add it to both sides.

To break the string apart you will:
Find the location, n, of the " $=$ " sign.
Store the numerical vale of the right side into a variable c.
Store the left side of the display up to the location of the "=" in disp
You must find c using the original display value before you replace disp with only the left side of the display

Type:

$$
\begin{aligned}
& \mathrm{n}=\operatorname{disp} . \operatorname{index}("=") \\
& \mathrm{c}=\operatorname{int}(\operatorname{disp}[\mathrm{n}+1:]) \\
& \operatorname{disp}=\operatorname{disp}[: \mathrm{n}]
\end{aligned}
$$

[a A \#] contains the symbols: and [ ].
22. e should be either $[1,10]$ or $[-10,-1]$. Therefore the if statement is similar to the if for the variable $d$.
if randint $(0,1)==0$ :

$$
e=\operatorname{randint}(1,10)
$$

disp+="+"+str(e)
else:

$$
e=\operatorname{randint}(-10,-1)
$$

disp+=str(e)
23. Add the $e$ to the total and the display.
$c+=e$
disp+="="+str(c)

Make sure both of these lines are indented only one level, two diamonds.
They are not part of the if statement. They are part of the definition.

```
 CDITOR: RACE
 c=c*d
* disp=str(d)+"("+disp+")="+str(
 c)
*return disp,x
def t3():
* disp,x=t2()
* n=disp.index("=")
*c=int(disp[n+1:])
* disp=disp[:n]
Fns... (a A #|Tools| Run |Files
```

() EDITOR: RACE				$\square$
def t3():				
- disp, $x=t 2$ ()				
* $n=$ disp.index( $"=$ ")				
- coint(disp[n+1:])				
disp=disp[:n]				
. . . disp+="+"+str(e)				
- else:				
(..eserandint (-10,-1)				
Fns...	\|a A \#	\# Tools	Run	Files


EDITOR: RACE PROGRAM LINE 0040				$\square$
*n=disp.index("=")				
* c=int(disp[n+1:])				
*disp=disp[:n] ${ }^{\text {d }}$,				
$\cdots$ if randint ( 0,1 )==0:				
$\begin{gathered} \text { e=randint }(1,10) \\ \cdots \quad \text { disp }+="+"+s t r(e) \end{gathered}$				
- else:				
$\cdots$ e=randint ( $-10,-1$ )				
$\cdots$...disp+=str(e)				
* c+=e				
* disp+="="+str(c)				
Fns...	\|a A \#	Tools	Run	Files

Math Explorations with Python
TI-84 CE Python Technology
24. Return both the new display and the value of $x$
return disp, $x$

Ready Set...Solve!

Student Document

				$\square \square$
- disp=disp[:n]				
$\cdots$ if randint $(0,1)==0$ :				
$\begin{aligned} & \text { e=randint }(1,10) \\ & \text { disp+="+"+str}(e) \end{aligned}$				
- else:				
$\begin{aligned} & \text { e=randint }(-10,-1) \\ & \cdots \quad \text { disp }+=\operatorname{str}(e) \end{aligned}$				
- c+=e				
* disp+="="+str(c)				
*return disp,x				
Fns...	a A \#	\# Tools	Run	Files

disp=disp[:n]
.. if randint $(0,1)==0$ :
$\cdots e=r a n d i n t(1,10)$
... disp+="+" + str $($ e $)$
else:
$\cdots e=$ randint $(-10,-1)$
…disp+=str(e)

- c+=e
- cdisp+="="+str(c)
* return disp,x

Fns...	a $\mathrm{A} \#$	Tools	Run	Files

25. Now that you have functions to generate random questions, you are ready to code the race.

The race layout will be:
while both players have scores under 20:
ask a question
If the user is correct, add 2 or 3 steps, otherwise go 0 or 1 steps.
The computer moves 1 to 3 steps.
Display the race
26. Create distance run variables for the computer and the user.

Set each one equal to 0 .

$$
\begin{aligned}
& c x=0 \\
& u x=0
\end{aligned}
$$

*Hint: The tools menu, [zoom], has copy/paste line commands.
27. Add two list variables to keep track of each round.

$$
\begin{aligned}
& \text { cxlist }=[0] \\
& \text { uxlist }=[0]
\end{aligned}
$$

```
PROGRAM LINE 0055
disp+="+"+str(e)
else:
\(\cdots\) e=randint \((-10,-1)\)
c+=e
disp+="="+str(c)
-return disp,x
\(c \times=0\)
\(u \times=0\)
```

```
 EDITOR: RACE
```

        EDITOR: RACE
        Program LINE 0055
        Program LINE 0055
        disp+="+"+str(e)
        disp+="+"+str(e)
    else:
    else:
    * e=randint(-10,-1)
    * e=randint(-10,-1)
    \cdots...disp+=str(e)
\cdots...disp+=str(e)

* c+=e
* c+=e
~-disp+="="+str(c)
~-disp+="="+str(c)
*return disp,x
*return disp,x
cx=0
cx=0
ux=0
ux=0

Fns...	a $A$ \# Tools	Run	Files

```


Math Explorations with Python
TI-84 CE Python Technology
28. While both players have scores under 20, continue play.
while \(c x<20\) and \(u x<20\) :

Fns \(>\mathrm{Ctl}>\) while
29. Generate a number \(n\) from 1 to 3 . Use this number to use of the type functions to generate the question display and value for \(x\).
\(\mathrm{n}=\operatorname{randint}(1,3)\)
if \(\mathrm{n}==1\) :
disp, \(x=t 1()\)
elif \(n==2\) :
disp, \(x=t 2()\)
else:
disp, \(x=t 3()\)
30. Ask the user the question. Store the response as u.
\(u=\operatorname{int}(\operatorname{input}(\operatorname{disp}+", x="))\)

Fns > Type > int
Fns \(>\mathrm{I} / \mathrm{O}>\) input
31. If the user's \(u\) matches the \(x\) value, move the player forward 2 or 3 spaces. Otherwise, move forward 0 or 1 spaces.
if \(u==x\) :
ux += randint(2,3)
else:
\(u x+=\operatorname{randint}(0,1)\)
print("sorry \(x=\) ", \(x\))
```

            EDITOR: RACE 0050 _D]
    * disp+="="+str(c)
*return disp,x
cx=0
ux=0
cxlist=[0]
uxlist=[0]
while cx<20 and ux<20:
FFns... /a A \#|Tools| Run |Files

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{(9) PDITOR: RACE} & ■ \(\square\) \\
\hline \multicolumn{6}{|l|}{cxlist=[0]} \\
\hline \multicolumn{6}{|l|}{uxlist=[0]} \\
\hline \multicolumn{6}{|l|}{while cx<20 and \(u x<20\) : \(\because n=r\) andint \((1,3)\)} \\
\hline \multicolumn{6}{|l|}{\(\cdots\) - disp, \(\times=\) t1 ()} \\
\hline \multicolumn{6}{|l|}{- \(e\) elif \(\mathrm{n}==2\) :} \\
\hline \multicolumn{6}{|l|}{***disp,x=t2()} \\
\hline \multicolumn{6}{|l|}{- else:} \\
\hline \multicolumn{6}{|l|}{\(\cdots\) - disp, \(x=t 3\) ()} \\
\hline Fns... & a A & \# & Tools & Run & Files \\
\hline
\end{tabular}
```

        EDITOR: RACE
        PROGRAM LINE 0058
    ```
uxlist=[0]
```

while cx<20 and ux<20:

* n=randint(1,3)


# if n==1:

    * - disp,x=t1()
    *elif n==2:
*...disp,x=t2()
-clse:

*     * disp,x=t3()
* u=int(input(disp+",x="))
|Fns... (a A \# Tools)

```
```

        EDITOR: RACE
        PROGRAM LINE 0062
    - disp, \(x=t 1\) ()
    - elif $n==2$ :
.... disp, $x=t 2$ ()
- else:
** disp, $x=t 3$ ()
- u=int(input(disp+", $\times=$ "))
*if $u==x$ :
$\cdots u x+=\operatorname{randint}(2,3)$
- else:
$\cdots$....ux+=randint(0,1)
....print("sorry, $x=$ ", $x$ )
Fns... $\mid$ a A \#|Tools| Run |Files

```
\({ }^{* *}\) Check this carefully. Make sure you used \(u\) and ux correctly.

\section*{Math Explorations with Python \\ TI-84 CE Python Technology}
32. Add between 1 and 3 steps for the computer.
cx += randint(1,3)
33. Add ux to uxlist and cx to cxlist.
uxlist.append(ux)
cxlist.append(cx)

Fns > Lists > append
34. After the loop, print the computer's score and your score.
print("computer", cx)
print("you", ux)

Fns \(>\mathrm{I} / \mathrm{O}>\) print
35. Execute your program. [trace]

Who won?

Run your program a few more times.

\author{
Ready Set...Solve!
}

Student Document
```

EDITOR: RACE
Program LTNE 0065
elif $n==2$ :
....disp, $x=t 2()$
else:

```

```

* u=int(input(disp+",x="))
- if $u==x$ :
$\cdots \cdot u x+=r a n d i n t(2,3)$
- else:
$\cdots \cdot u x+=r a n d i n t(0,1)$
.....print("sorry, $x=$ ",x)
- cx+=randint $(1,3)$
Fns...|a A \#|Tools| Run |Files

```
```

© EDITOR: RACE
Procram LiNE 0066

- ... disp, $x=t 3()$
- u= int(input(disp+", $x=$ " $)$ )
$\because$ if $u==x$ :
$\cdots \cdot u x+=$ randint $(2,3)$
- else:
$\cdots \cdot u x+=$ randint $(0,1)$
.....print("sorry, $x=$ ",x)
- cx+=randint $(1,3)$
- uxlist.append( $u x$ )
- cxlist.append (cx)
Fns... 1 a A \#|Tools/ Run |Files

```

\section*{EDITOR: RACE}

PROGRAM LINE 0072
*if \(u==x\) :
\(\cdots \cdot u x+=\) randint \((2,3)\)
else:
\(\cdots \cdot u \times+=\) randint \((0,1)\)
.....print("sorry, =",x)
-cx+=randint(1,3)
\(\cdots u \times 1\) ist.append(ux)
- cxlist.append(cx)
print("computer", cx)
print("you", ux)
Fns... |a A \#|Tools| Run |Files

Math Explorations with Python
TI-84 CE Python Technology
36. Now to add the "graphics".

Add one to the length of the computer race. Set it equal to the maximum x . If the user ran farther, use that for the max x ,
\[
x \max =c x+1
\]
if \(u x>x m a x\) :
\(x \max =u x+1\)
plt.window(0, xmax, 0,4)

Fns > Modul > ti_plotlib > window
37. Clear the screen.

Fns > Modul > ti_plotlib > cls
38. You need to plot both lists. You could plot the lists all at once, but then there won't be the suspense of watching the race. Therefore, you will plot one step of the race each 0.2 seconds.

The number of items in the list can be found using len().

Add the line:
for i in range(len(cxlist)):
sleep(.2)

Fns \(>\) Control \(>\) for in range
Fns \gg List > len
PDITOR: RACE
print("computer", cx)
print("you", ux)
xmax=cx+1
if ux+1>xmax:
plt. window(0, xmax, 0,4)
plt.cls()
for i in range(len(cxlist)):
sleep(.2)
\begin{tabular}{|l|l|l|}
\hline Fns... & a A \# Tools \\
\hline
\end{tabular}
```

        EDITOR: RACE
        PROGRAM LINE 0084
    *uxlist.append(ux)
**cxlist. append(cx)
print("you",ux)
xmax=cx+1
if ux+1>xmax:

* xmax=ux+1
plt.window(0,xmax,0,4)
|Fns... (a A \# Tools| Run /Files

```
print("computer",cx)
```

```
print("computer",cx)
```

EDITOR: RACE
PROGRAMLINE 0086
cxlist. append (cx)
print("computer", cx)
print("you", ux)
xmax=cx+1
if ux+1>xmax:
plt.window(0, xmax, 0,4)
plt.cls()

| Fns... | a $A$ \# \# Tools | Run | Files |
| :--- | :--- | :--- | :--- |

EDITOR: RACE
PROGRAMLINE 0086
cxlist. append (cx)
print("computer", cx)
print("you", ux)
xmax=cx+1
if ux+1>xmax:
plt.window(0, xmax, 0,4)
plt.cls()

| Fns... | a $A$ \# $\#$ Tools | Run | Files |
| :--- | :--- | :--- | :--- |

Math Explorations with Python
TI-84 CE Python Technology
39. Plot each item in each list. plt.plot( xvalue, yvalue, mark)


Let ' $x$ ' represent the user and plot the values at $y=2$.

Let 'o' represent the computer and plot the values at $\mathrm{y}=1$.

## EDITOR: RACE <br> PROGRAM LINE 0080

$\bar{x}$ max $=c \times+1$
if $u x+1>x$ max:

- xmax=ux+1
plt.window(0, xmax, 0, 4)
plt.cls()
for $i$ in range(len(cxlist)):
- sleep(.2)
-plt.plot(cxlist[i],1,"0")
plt.plot(uxlist[i],2,"x")

| Fns... | a $\mathrm{A} \# \mid$ Tools | Run | Files |
| :--- | :--- | :--- | :--- |

```
EDITOR: RACE
 PROGRAM LINE 0089
_plt.plot(cxlist[i],1,"o")
- plt.plot(uxlist[i],2,"x")
if cx==ux:
*"plt.text_at(1,"tie","left")
elif cx>ux:
**plt.text_at(1,"computer wins",
 "left")
else:
*plt.text_at(1,"you win","left"
|Fns... |a A #|Tools| Run /Files
(0) EDITOR: RACE (00gs
```

42. Play your game several times. How often can you beat the computer?
43. Challenge:

The command plt.color(red, green, blue) changes the color for both text and plots. The values for red, green and blue can be any integer value from 0-255.
example:
plt.color(255,0,0) and plt(100,0,0) are both red.
The 222 version will be a brighter red compared to the 100 .

Use this function to change the "o" plots to blue or another color of your choice. Change the " $x$ " plots to magenta or any other color of your choice. Change the who won text plots to match the x and o plots.

