Matrix Transformations

MATH NSPIRED

Math Objectives

Students will be able to identify the correct 2×2 matrix that, when multiplied to a matrix representation of a polygon, results in a polygon:

- Reflected across the x-axis.
- Reflected across the y-axis.
- Rotated 90° about the origin.
- Rotated 180° about the origin.

Students will look for regularity in repeated reasoning (CCSS Mathematical Practice).

Vocabulary

- rotation
- reflection
- matrix
- element
- identity

About the Lesson

This lesson involves:

- Grabbing vertices of a polygon undergoing reflections and rotations in the coordinate plane to determine the transformation's type.
- Duplicating a reflection or rotation by:
 - Changing the elements of 2 × 2 matrices.
 - Evaluating the effects of the multiplying matrix on the polygon in the coordinate plane.
- As a result, students will make conjectures about the relationships between certain 2 × 2 matrices and their effects on the resulting transformed polygons obtained through matrix multiplication.

TI-Nspire™ Navigator™ System

- Use Live Presenter for student demonstrations.
- Use Screen Capture to examine patterns that emerge.
- Use Quick Polls to check for student understanding.

TI-Nspire™ Technology Skills:

- Download a TI-Nspire document
- Open a document
- Move between pages
- Grab and drag a slider
- Grab and drag a point

Tech Tips:

- Make sure the font size on your TI-Nspire handheld is set to Medium.
- In Graphs, you can hide the entry line by pressing ctrl
 G.

Lesson Materials:

Student Activity

Matrix_Transformations_Student .pdf

Matrix_Transformations_Student .doc

TI-Nspire document Matrix_Transformations.tns

Visit www.mathnspired.com for lesson updates and tech tip videos. (optional)

Discussion Points and Possible Answers

TI-Nspire Navigator Opportunity: *Live Presenter, Quick Poll (Open Response)*See Note 1 at the end of this lesson.

Tech Tip: If students experience difficulty dragging a point, check to make sure that they have moved the cursor until it becomes a hand (১) getting ready to grab the point. Also, be sure that the word *point* appears, not the word *text*. Then press ctrl হি to grab the point and close the hand (১).

Move to page 1.2.

- 1. Grab and move a vertex of the polygon in Quadrant I.
 - a. How are the polygons in Quadrants I and IV related?

Answer: They are reflections over the *x*-axis of each other.

b. If the coordinates of a vertex in Quadrant I are (3, 9), what are the coordinates of the corresponding vertex in Quadrant IV?

Answer: (3,-9)

c. If the coordinates of a vertex in Quadrant I are (x, y), what are the coordinates of the corresponding vertex in Quadrant IV?

Answer: (x, -y).

Move to page 1.3.

2. Every polygon has a matrix representation of $\begin{bmatrix} x_1 & x_2 & x_3 & \dots \\ y_1 & y_2 & y_3 & \dots \end{bmatrix}$

Write the matrix representation of the polygon in Quadrant I.

Teacher Tip: The next question, and others that follow, require knowledge of matrix multiplication. To trigger previous learning, you may want to display the following matrix multiplication.

$$\begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 2(1) + 1(2) & 2(2) + 1(1) & 2(3) + 1(5) \\ 3(1) + 0(2) & 3(2) + 0(1) & 3(3) + 0(5) \end{bmatrix} = \begin{bmatrix} 4 & 5 & 11 \\ 3 & 6 & 9 \end{bmatrix}$$

Move to page 1.4.

- The polygon in Quadrant I has its matrix notation displayed at the bottom of the screen and is being multiplied by the displayed matrix. The product of the matrices is also displayed.
 - a. Why does multiplying by $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ result in an identity?

Answer: Each newly calculated *x*-value is determined by multiplying each *x*-coordinate by 1, the corresponding *y*-coordinate by zero, and adding these together. Therefore, 1(x) + 0(y) = x. Similarly, each newly calculated *y*-value is determined by multiplying each *x*-coordinate by 0, the corresponding *y*-coordinate by 1, and adding these together. Therefore, 0(x) + 1(y) = y.

b. Grab and move the sliders for each element of the 2×2 matrix until the polygon in Quadrant I is a reflection of the polygon in Quadrant IV. What 2×2 matrix results in a reflection over the *x*-axis?

Answer: $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

TI-Nspire Navigator Opportunity: *Screen Capture*See Note 2 at the end of this lesson.

Move to page 2.1.

- 4. Grab and move a vertex of the polygon in Quadrant I.
 - a. How are the polygons in Quadrants I and II related?

<u>Answer:</u> They are reflections over the *y*-axis of each other.

b. If the coordinates of a vertex in Quadrant I are (12, 1), what are the coordinates of the corresponding vertex in Quadrant II?

Answer: (-12, 1)

c. If the coordinates of a vertex in Quadrant I are (x, y), what are the coordinates of the corresponding vertex in Quadrant II?

Answer: (-x, y).

TI-Nspire Navigator Opportunity: Quick Polls (Open Response), Live Presenter See Note 3 at the end of this lesson.

Move to page 2.2.

- 5. Grab and move the sliders for each element of the multiplication matrix until the polygon in Quadrant I is a reflection of the polygon in Quadrant II.
 - a. What 2×2 matrix results in a reflection over the *y*-axis?

Answer:
$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

b. Why does this matrix multiplication result in a reflection over the *y*-axis?

Answer: Each newly calculated x-value is determined by multiplying each x-coordinate by -1, the corresponding y-coordinate by zero, and adding these together. Therefore, -1(x)+0(y)=-x.

Similarly, each newly calculated y-value is determined by multiplying each x-coordinate by 0, the corresponding y-coordinate by 1, and adding these together. Therefore, 0(x) + 1(y) = y.

TI-Nspire Navigator Opportunity: Screen Capture See Note 4 at the end of this lesson.

Move to page 3.1.

- 6. Grab and move a vertex of the polygon in Quadrant I.
 - a. How are the polygons in Quadrants I and II related?

Answer: The polygon in Quadrant II is a 90° counterclockwise rotation of the polygon in Quadrant I.

b. If the coordinates of a vertex in Quadrant I are (3, 9), what are the coordinates of the corresponding vertex in Quadrant II?

Answer: (-9, 3)

c. If the coordinates of a vertex in Quadrant I are (x, y), what are the coordinates of the corresponding vertex in Quadrant II?

Answer: (-y, x).

TI-Nspire Navigator Opportunity: Quick Polls (Open Response), Live Presenter See Note 5 at the end of this lesson.

Teacher Tip: By definition, rotations in mathematics are counterclockwise unless otherwise stated.

Move to page 3.2.

7. Grab and move the sliders for each element of the multiplication matrix until the polygon in Quadrant I is a rotation of the polygon in Quadrant II.

a. What 2×2 matrix results in a 90° rotation about the origin?

Answer: $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

b. Why does this matrix multiplication result in a 90° rotation about the origin?

Answer: Each newly calculated x-value is determined by multiplying each x-coordinate by 0, the corresponding y-coordinate by -1, and adding these together. Therefore, O(x) - I(y) = -y.

Similarly, each newly calculated y-value is determined by multiplying each x-coordinate by 1, the corresponding y-coordinate by 0, and adding these together. Therefore, 1(x) + 0(y) = x.

TI-Nspire Navigator Opportunity: Screen Capture See Note 6 at the end of this lesson.

Move to page 4.1.

- 8. Grab and move a vertex of the polygon in Quadrant I.
 - a. How are the polygons in Quadrants I and III related?

Answer: The polygon in quadrant II is a 180° counterclockwise rotation of the polygon in Quadrant I.

b. If the coordinates of a vertex in Quadrant I was (3, 9), what are the coordinates of the corresponding vertex in Quadrant III?

Answer: (-9,-3)

c. If the coordinates of a vertex in Quadrant I was (x, y), what are the coordinates of the corresponding vertex in Quadrant III?

Answer: (-x, -y).

TI-Nspire Navigator Opportunity: Quick Polls (Open Response), Live Presenter See Note 7 at the end of this lesson.

Move to page 4.2.

9. Grab and move the sliders for each element of the multiplication matrix until the polygon in Quadrant I is a rotation of the polygon in Quadrant III.

Answer:
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

b. Why does this matrix multiplication result in a 180° rotation about the origin?

<u>Answer:</u> Each newly calculated *x*-value is determined by multiplying each *x*-coordinate by -1, the corresponding *y*-coordinate by 0, and adding these together. Therefore, -1(x) + 0(y) = -x.

Similarly, each newly calculated *y*-value is determined by multiplying each *x*-coordinate by 0, the corresponding *y*-coordinate by -1, and adding these together. Therefore, 0(x) - 1(y) = -y.

TI-Nspire Navigator Opportunity: *Screen Capture* See Note 8 at the end of this lesson.

Wrap Up

Upon completion of the discussion, the teacher should ensure students know that when a polygon with vertices (x_1, y_1) , (x_2, y_2) , ... is written as a matrix and multiplied by a 2 × 2 matrix, the result is a:

- Reflection over the *x*-axis when the 2×2 matrix is $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
- Reflection over the *y*-axis when the 2×2 matrix is $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.
- Rotation of 90° centered at the origin when the 2 × 2 matrix is $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.
- Rotation of 180° centered at the origin when the 2 × 2 matrix is $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.

Assessment

1. Multiplying the matrix representation of a polygon by $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ results in what transformation?

Answer: A reflection across the *x*-axis.

2. Multiplying the matrix representation of a polygon by $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ results in what transformation?

Answer: A rotation of 180°.

TI-Nspire Navigator

Note 1

Question 1a, *Live Presenter:* Consider using *Live Presenter* to demonstrate how to grab and move a point of the polygon in Quadrant 1.

Question 1b, Quick Poll (Open Response), Live Presenter: Consider using a Quick Poll for students to submit their answer to check for understanding. For students having trouble, consider using Live Presenter to demonstrate the concept.

Note 2

Question 3b, Screen Capture: Use a Screen Capture of page 1.3. As a class, discuss the relationship between the elements of the 2×2 matrix, the resulting matrix, and its graph. If students have difficulty, remind them that they are trying to make the *x*-coordinates remain the same, but the *y*-coordinates have the opposite sign.

Note 3

Question 4b, Quick Poll (Open Response), Live Presenter: Consider using a *Quick Poll* for students to submit their answer to check for understanding. For students having trouble, consider using *Live Presenter* to demonstrate the concept.

Note 4

Question 5b, Screen Capture: Use a Screen Capture of page 2.2. As a class, discuss the relationship between the elements of the 2×2 matrix, the resulting matrix, and its graph. If students have difficulty, remind them that they are trying to make the *y*-coordinates remain the same, but the *x*-coordinates have the opposite sign.

Note 5

Question 6b, Quick Poll (Open Response), Live Presenter: Consider using a Quick Poll for students to submit their answer to check for understanding. For students having trouble, consider using *Live Presenter* to demonstrate the concept.

Note 6

Question 7b, Screen Capture: Use a Screen Capture of page 3.2. As a class, discuss the relationship between the elements of the 2×2 matrix, the resulting matrix, and its graph. If students have difficulty, remind them of their answer to question 6b.

Matrix Transformations

MATH NSPIRED

Note 7

Question 8b, Quick Poll (Open Response), Live Presenter: Consider using a Quick Poll for students to submit their answers to check for understanding. For students having trouble, consider using Live Presenter to demonstrate the concept.

Note 8

Question 9b, Screen Capture: Use a Screen Capture of page 4.2. As a class, discuss the relationship between the elements of the 2×2 matrix, the resulting matrix, and its graph. If students have difficulty, remind them of their answer to question 8b.