Math Objectives

- Students will solve a problem experimentally by fitting a function to a set of data.
- Students will solve the same problem theoretically by making and verifying conjectures using algebraic and trigonometric methods.
- Students will use appropriate tools strategically (CCSS Mathematical Practice).
- Students will reason abstractly and quantitatively (CCSS Mathematical Practice).
- Students will construct viable arguments and critique the reasoning of others (CCSS Mathematical Practice).

Vocabulary

- Law of Sines
- Law of Cosines

About the Lesson

- This lesson involves determining the distance one can hear a radio station as a function of the range of the station.
- Note: Some portions of the activity require CAS functionality - TINspire CAS Required.
- As a result, students will:
- Solve the problem empirically by fitting a regression equation to a set of gathered data.
- Solve the problem theoretically by finding an equation involving the Law of Cosines and the Law of Sines.

PreCalculus

Radio Station KTNS
You will solve the problem: "As you drive along road OM, for how many miles can you hear radio station KTNS if the range of the radio station is r miles?" in two ways empirically and theoretically.|

TI-Nspire ${ }^{\text {TM }}$ Technology Skills:

- Download a TI-Nspire document
- Open a document
- Move between pages
- Grab and drag a point

Tech Tips:

- Make sure the font size on your TI-Nspire handhelds is set to Medium.
- Once a function has been graphed, the entry line can be shown by pressing ctril \mathbf{G}. The entry line can also be expanded or collapsed by clicking the chevron.

```
Lesson Files:
Student Activity
Radio_Station_KTNS_Student.p
df
Radio_Station_KTNS_Student.d
OC
TI-Nspire document
Radio_Station_KTNS.tns
```

Visit www.mathnspired.com for lesson updates and tech tip videos.

Discussion Points and Possible Answers

Radio Station KTNS is located at point P in the figure. The range of its signal is r miles, meaning that people within r miles of P would be able to hear the station. You are driving along road $O M$ at an angle of 30° with $O P$. For how many miles, d, could you hear station KTNS?

In $\triangle P A B$, the Law of Cosines tells us that $d^{2}=2 r^{2}-2 r^{2} \cdot \cos (\angle A P B)$, so it is reasonable to assume that d^{2} could be a linear function of r^{2}. To solve this problem, you will determine d^{2} in terms of r^{2} in two ways:

- Find an experimental model by gathering data and fitting an appropriate regression function to the data.
- Find a theoretical model using the Law of Sines, the Law of Cosines, and algebra.

Move to page 1.2.

The figure is a scale drawing with 1 unit $=10$ miles so that $\mathrm{OP}=12$ units or 120 miles.

1. In miles, the reasonable values of r satisfy $k<r \leq 120$. What is the value of k ? Why?

Answer: $k=12 \cdot \sin \left(30^{\circ}\right)=6$ miles since the smallest value of k occurs when r is perpendicular to $O M$ and $d=0$.

Move to page 1.3.

Using the slider, the following data has been gathered in the spreadsheet in the four columns: $\operatorname{rad}(r) \quad \operatorname{dis}(d) \quad r 2=r^{2} \quad d 2=d^{2}$

		- Radio_St.rev		deg $] \times$
	A rad	dis		D d2
	= capture('r	capture('c	[${ }^{\wedge} 2$	=b[${ }^{\wedge} 2$
1	11.8	20.3064	139.24	412.3
2	11.5	19.6058	132.25	384.3
3	11.2	18.8984	125.44	357.1
4	10.9	18.1832	118.81	330.6
5	10.6	17.4593	112.36	304.8
	$=11.8$			1

A scatterplot of the data has been drawn on this page.

$\begin{array}{lllll}1.3 & 1.4 & 1.5 \\ \text { *Radio_St.rev } & \text { DEG } \square \times\end{array}$

©do your calculations for the experimental model here $y=d 2$ in units. Select MENU > Statistics > Stat Calculations > Linear Regression ($\mathbf{m x} \mathbf{x} \mathbf{b}$). with $r 2$ for X List, $d 2$ for Y List, and Save RegEqn to: $f 1$.

Answer: $d^{2}=4 r^{2}-144.611$.

Move back to page 1.4.

3. Plot the regression equation on the scatterplot, and note how well it fits. Open the entry line, move back up to $f 1(x)$, and press enter. According to this linear model, for how many miles, d, could you hear the station if $r=90$ miles?
Hint: Remember $r=9$ units corresponds to $r=90$ miles.

Answer: $\sqrt{4 \cdot 9^{2}-144.61} \cdot 10=133.94$ miles.

Teacher Tip: Students could use Scratchpad or the Calculator page to compute their answers for \#3.

Move to page 2.1.

Theoretical Model
Find the theoretical function expressing d^{2} in terms of r^{2} by completing the argument below.

4. The figure for this problem shows an example of an ambiguous case of the Law of Sines since there are two triangles with two sides $O P=12, r$, and the non-included angle of 30°.
Consequently, if we apply the Law of Cosines to a triangle with sides $O P=12, r, x$ and angle 30°, we obtain the equation:
\qquad
On the scale drawing, then, the two solutions for x are $O A$ and $O B$, and the distance, d, is $d=O B-O A$.

Sample Answers: By the Law of Cosines, $r^{2}=x^{2}+12^{2}-2 \cdot 12 \cdot x \cdot \cos \left(30^{\circ}\right)$, so that the desired equation is $x^{2}-12 \sqrt{3} \cdot x+\left(144-r^{2}\right)=0$.
5. a. Find the two solutions for x of this equation. \qquad .
Hint: You can use "solve" command. Both solutions will be functions of r^{2}
Sample Answers: Using paper-and-pencil or solve $\left(x^{2}-12 \sqrt{3} x+144-r^{2}=0, x\right)$, the two solutions are $x=6 \sqrt{3}-\sqrt{r^{2}-36}$ and $x=6 \sqrt{3}+\sqrt{r^{2}-36}$.
b. Find the difference of the two solutions and express d^{2} in terms of r^{2} in units:
$d^{2}=$ \qquad
Answer: The difference is $d=2 \sqrt{r^{2}-36}=\sqrt{4 r^{2}-144}$ so that $d^{2}=4 r^{2}-144$.
6. How does your theoretical equation compare to the regression equation?

Answer: They are essentially the same with only a small difference in the constant terms.
7. According to this theoretical model, for how many miles, d, could you hear the station if
$r=90$ miles?
Hint: Remember $r=9$ units corresponds to $r=90$ miles.
Answer: $\sqrt{4 \cdot 9^{2}-144} \cdot 10=134.16$ miles.
8. Suppose the angle between the two roads $O P$ and $O M$ is changed to θ°. Express d^{2} in terms of r^{2} and θ :
$d^{2}=$ \qquad

Answer: We want to find the square of the difference of the two solutions of $x^{2}-24 x \cdot \cos \theta+\left(144-r^{2}\right)=0$. If we use 'paper-and-pencil', we will probably obtain $d^{2}=4 r^{2}+576\left(\cos ^{2} \theta-1\right)$. Using solve $\left(x^{2}-24 * \cos \theta+144-r^{2}=0, x\right)$ and some rewriting yields $d^{2}=4 r^{2}-576 \sin ^{2} \theta$.

Teacher Tip: Ask students why these two solutions are equivalent.

Wrap Up

Upon completion of the lesson, the teacher should ensure that students are able to understand:

- How to interpret a scale drawing.
- How to fit a linear regression equation to a set of data.
- Setting up and solving an equation involving the Law of Cosines and interpreting the solutions.

