

Constructing Similar Triangles

Student Activity

Name _____ Class

Problem 1 – Similar Triangles Using Dilation

• Open Cabri Jr. and open a new file.

Student A: Construct a triangle and label the vertices *P*, *Q*, and *R*. Send the file to Students B and C.

Measure $\angle P$ and \overline{PQ} .

Student B: Measure $\angle Q$ and \overline{QR} .

Student C: Measure $\angle R$ and \overline{PR} .

Note: Place the measurements in the top right corner.

- Construct point C in the center of the triangle.
- Place the number 2 on the screen.
- Select the **Dilation** tool and then select point *C*, the triangle, and the number **2**.
- Label the triangle that appears, XYZ, so that X corresponds to P, Y to Q and Z to R.

Student A: Measure $\angle X$ and \overline{XY} .

Student B: Measure $\angle Y$ and \overline{YZ} .

Student C: Measure $\angle Z$ and \overline{XZ} .

- 1. What do you notice about the two angles? Compare this to the other students in your group.
- 2. How do the lengths of the sides compare? Is this the result that you were expecting?
- **3.** Predict what will happen to the corresponding angles and sides when a point on $\triangle PQR$ is moved. Drag your point in $\triangle PQR$. Do the corresponding angles remain congruent? Does the relationship between corresponding sides remain the same? Compare your results to others in your group.
- **4.** Drag point *C*. Are the relationships preserved under this change? Compare your results to others in your group. Does it make any difference that each person may have constructed a different center point.

Name	
Class	

Problem 2 - Different Scale Factors

Using the Alph-Num tool, change the scale factor from 2 to 3.

- 5. What happens to your construction? Does this change the relationships you found in Problem 1?
- 6. Change the scale factor from 3 to 0.5. How does this affect your construction?
- 7. Summarize your findings by stating the effect of a dilation on corresponding angles and sides.
- **8.** Drag $\triangle PQR$ to the lower left corner and drag point C to the right of the triangle. Change the scale factor to -2. Are the properties that you noted above preserved by these changes?

Problem 3 - Similar Triangles with a Parallel Line

- Student A: Open a new file and construct a $\triangle PQR$. Send the file to Students B and C. Measure $\angle P$ and \overline{PQ} .
- Student B: Measure $\angle Q$ and \overline{QR} .
- Student C: Measure $\angle R$ and \overline{PR} .
 - Construct a point on \overline{PQ} and label it S.
 - Construct a line through S that is parallel to \overline{QR} .
 - Label the point of intersection of side *PR* and the parallel line as *T*.
 - Hide the parallel line and construct line segment ST.
- **9.** Describe how you can prove whether or not all three pairs of corresponding angles are congruent. If they are congruent, then $\triangle PST$ is similar to $\triangle PQR$.
- **10.** Calculate the ratio of PQ:PS. Then calculate the ratios of the other sides. If all the ratios are equivalent, then the sides are proportional. Are the sides in $\triangle PST$ and $\triangle PQR$ proportional?