Open the TI-Nspire document Completing_the_Square.tns.

This activity lets you build perfect square quadratics with lead coefficient 1 using algebra tiles. This geometric model will be used to verify the algebraic expression.

Move to page 1.2.

Press ctrl ▶ and ctrl ◀ to navigate through the lesson.

1. Build perfect square quadratics with lead coefficient 1 by dragging the algebra tiles to the middle window. Record the perfect squares found. Click **(R)eset** to start over to find a new perfect square.

Side of Square	Perfect Square Quadratic	Coefficient of x-term	Constant Term

- 2. What patterns do you notice for all perfect squares?
 - a. What relationship exists between the side of the square and the coefficient of the x-term?
 - b. What relationship exists between the side of the square and the constant term?
 - c. What relationship exists between the coefficient of the *x*-term and the constant term?
 - d. Why is this called "completing the square"?

3. Expand the following:

a.
$$(x)(x)$$

b.
$$(x+1)(x+1)$$

c.
$$(x+2)(x+2)$$

d.
$$(x+3)(x+3)$$

e.
$$(x + n)(x + n)$$

- 4. Use either method to find $(x + 5)^2$.
- 5. State whether the following are perfect square quadratics. Explain why or why not.

a.
$$x^2 + 3x + 9$$

b.
$$x^2 + 14x + 49$$

c.
$$x^2 + 24x + 144$$

d.
$$x^2 + 6x + 36$$

6. Fill in the missing terms to make the following perfect square quadratics.

a.
$$x^2 + 16x + ____$$

b.
$$x^2 + \underline{\hspace{1cm}} + 81$$

c.
$$x^2 + 22x + ____$$

d.
$$x^2 + \underline{\hspace{1cm}} + 100$$

- 7. In your own words, explain how to "complete the square" algebraically.
- 8. Expand the following:

a.
$$(x)(x)$$

b.
$$(x-1)(x-1)$$

c.
$$(x-2)(x-2)$$

d.
$$(x-3)(x-3)$$

e.
$$(x - n)(x - n)$$

- 9. Do the negative values in question 8 change the pattern of perfect square quadratics? Explain.
- 10. Fill in the missing terms to make the following perfect square quadratics.

a.
$$x^2 - \underline{\hspace{1cm}} + 289$$

b.
$$x^2 - 26x +$$

c.
$$x^2 - 36x +$$

d.
$$x^2 - \underline{\hspace{1cm}} + 225$$

e.
$$x^2 - 5x +$$
