Consider the equation $y = x^2 + x - 15$. Press Y= and enter the equation as shown.

NORMAL FLOAT AUTO REAL DEGREE MP

Plot1 Plot2 Plot3

NY182X²+X-15

NY2=
NY3=
NY4=
NY5=
NY6=
NY7=

Press GRAPH. Take a moment to examine the graph. It would be helpful to be able to see the vertex. Press WINDOW and adjust the window to show more space below the *x*-axis. Press GRAPH.

- Approximately where is the vertex of the parabola?
- What do you notice about the shape of the parabola?

The symmetry of a parabola should mean that for every value of y that the parabola takes on, there are two values of x that are paired with it. Press [2nd] [TABLE]. Examine the table and notice that there are no repeated values of y. Try adjusting the table set up to view more values of x. Press [2nd] [TBLSET] and set the "change in table" to 0.5 as shown here.

NORMAL FLOAT AUTO REAL DEGREE MP

TABLE SETUP
TblStart=0

_Tbl=.5
Indpnt: Auto Ask
Depend: Auto Ask

Press 2nd [TABLE]. Now, as expected, each *y* value is associated with two *x* values. Choose a pair of *x*-values that have the same *y*-value.

Press 2nd [QUIT] to go to the Home screen. Average the two *x*-values by adding them together and then dividing the sum by 2.

NORMAL I Press + F		TO	REAL	DEGREE	MP	<u> </u>
X	Υı					Г
5	-15					
θ .5	-15					ı
.5	-14					ı
1 1.5 2 2.5 3	-12					ı
1.5	-9					ı
2	-5					ı
2.5	0					ı
3	6					ı
	13 21					ı
4	21					ı
4.5	30					
X=- . 5						

Return to the table. Choose another pair of *x*-values that have the same *y*-value.

Press 2nd [QUIT] to go to the Home screen. Average the two *x*-values.

- What do you notice about the two averages so far?
- What significance might this number have?
- Using either factoring or the quadratic formula you should (or will) be able to find two x-values that have the y-value of zero for many parabolas.

Choose the two *x*-values that represent the zeros of this parabola using the table or another method.

X	Υı		
.5	-14		
1	-12		
1.5	-9		
2 2.5 3 3.5	-5		
2.5	0		
3	6		
3.5	13		
4	21		
4.5	30		
5	40		
4.5 5 5.5	51		

Return to the home screen. Average the two *x*-values.

• What do you notice about these three averages? What significance might this number have?

Think about what it means to average two numbers on a number line. The average is the point *halfway* in between the numbers.

• If you fold the parabola and match up the symmetrical parts, what would be the point on the fold, or halfway in between?

To see what the significance of the value x = -0.25, examine the graph. Press GRAPH. Press TRACE. In "trace" mode, type (-) $\boxed{2}$ [5]. Press ENTER].

• What point on the parabola have you found?

