

Class

Open the TI-Nspire document *Altitude_to_the_Hypotenuse.tns.*

In a right triangle, the length of the altitude to the hypotenuse has a special relationship with the lengths of the two segments formed when this altitude intersects the hypotenuse.

Move to page 1.2.

- 1. Examine the angle markings of the sketch.
 - a. What kind of triangles are $\triangle ACB$, $\triangle ADC$, and $\triangle BDC$? Explain how you know.
 - b. Name all of the altitudes of $\triangle ACB$ that are shown in this sketch. Justify your answers.
 - c. Which one of the altitudes of $\triangle ACB$ shown is the altitude to the hypotenuse?
- 2. Drag the open circle at point *C*.
 - a. What stays the same as you drag point C?
 - b. What changes as you drag point C?

1.1 1.2 2.1 ▶ Altitude_to_t_use マ 🛛 🗶	
Altitude to the Hypotenuse	
Drag the open point at C to observe ratios and compare triangles.	

Altitude to the Hypotenuse Student Activity

Name		
Class		
1.1 1.2 2	.1 ▶ Altitude_to_tuse マ	(1 🗙

Move to page 2.1.

3. Examine the sketch. What variable represents the measure of each of the following?

> Shorter leg of $\triangle ADC$ Longer leg of ∆ADC ____ Shorter leg of $\triangle BDC$ _____

- 4. Drag the open circle at point C. What happens?
- 5. Drag the open circle at point C until \overline{AD} is on top of \overline{CD} and \overline{CD} is on top of \overline{BD} .
 - a. Write a similarity statement for the two smaller right triangles and explain why these triangles are similar.
 - b. How does the fact that the two small triangles are similar justify the fact that ratios $\frac{x}{h}$ and $\frac{h}{v}$ are always equal?
- 6. Use algebra to solve the equation $\frac{x}{h} = \frac{h}{v}$ for *h*.
- 7. Drag the open circle at the original point C until the thick copy of \overline{AD} is equal to \overline{CD} .

What is the relationship between *x*, *y*, and *h* now?