Activity Overview

In this activity, students will establish that several triangles are similar and then determine that the altitude to the hypotenuse of a right triangle is the geometric mean between the segments into which it divides the hypotenuse.

Topic: Ratio, Proportion, & Similarity

• Prove and apply the Mean Proportional Theorem for triangles.

Teacher Preparation and Notes

- In a right triangle, the altitude from the right angle to the hypotenuse will be the geometric mean between the segments of the hypotenuse.
- X is the geometric mean between A and B if $\frac{A}{X} = \frac{X}{B}$; this can also be expressed as $X^2 = AB$, or $X = \sqrt{AB}$.
- To download the student worksheet, go to <u>education.ti.com/exchange</u> and enter "8183" in the keyword search box.

Suggested Related Activities

To download any activity listed, go to <u>education.ti.com/exchange</u> and enter the number in the keyword search box.

- Geometry: Concurrent Lines, Medians, and Altitudes with CabriTM Jr. (TI-84 Plus family) — 7288
- \bullet Geometric Mean Investigation (TI-Nspire $^{\rm TM}$ technology) 9944
- ullet Geometric Mean with TI-Nspire (TI-Nspire $^{\mathrm{TM}}$ technology) 9655

This activity includes screen captures taken from the TI-84 Plus Silver Edition. It is also appropriate for use with the TI-83 Plus and TI-84 Plus but slight variances may be found within the directions.

Compatible Devices:

• TI-84 Plus Family

Software Application:

• CabriTM Jr.

Lesson Files:

- GeometricMean_Student.pdf
- GeometricMean Student.doc

Click <u>HERE</u> for Graphing Calculator Tutorials.

Introduction

Triangle ABC is a right triangle with right angle $\angle ABC$ and an altitude from the right angle to the hypotenuse. Therefore, $m\angle ADB = 90^\circ$ and $m\angle CDB = 90^\circ$. Using knowledge of similar triangles, we could conclude that $\triangle ABC$ is similar to $\triangle ADB$ and is similar to $\triangle BDC$. When we create proportions from the two smaller triangles, we get: $\frac{AD}{BD} = \frac{BD}{DC}$.

Simplifying this we have $BD^2 = AD \times DC$.

The line segment \overline{BD} is called the **Geometric Mean** between \overline{AD} and \overline{DC} .

The Geometric Mean

Students are to construct \overline{AB} and a perpendicular line to \overline{AB} through B.

Students are to use the **Point On** tool to create a point C on the perpendicular line (**F2** > **Point** > **Point on**).

Then, they can hide the perpendicular line with the **Hide/Show** tool and construct line segments connecting *A* to *C* and *B* to *C*.

They should hide the perpendicular line and construct a line segment connecting B to D.

Direct students to construct line segments \overline{AD} and \overline{DC} and measure the lengths of \overline{AD} , \overline{DC} , and \overline{BD} .

Students should use the **Calculate** feature to find the product of the lengths of \overline{AD} and \overline{DC} . Then, they should use the **Calculate** feature again to find the square of BD. To do this, click on the measure of \overline{BD} , press \boxtimes and click on the measure of \overline{BD} again.

To verify that the triangles are similar, have students measure the angles in the figure. All of the angles in this figure have been measured.

Students should drag point A and point C so that AD = 2 and DC = 6. It may be very difficult to get these values exactly due to the screen resolution. In this figure, the accuracy of the lengths of \overline{AD} and \overline{DC} are shown to one decimal place.

Students should manipulate their figure again so that AD = 1 and DC = 3. Note that the numbers in this figure are slightly off again.

They should see that the measurement of \overline{BD} is the square root of AD^*DC . They are to consider how to use this figure to find other radical values.

Student Solutions

1.
$$BD = \sqrt{3}$$
 cm ≈ 1.732 cm

2. Sample answers:

a.
$$AD = 2$$
 cm, $DC = 5$ cm

b.
$$AD = 2$$
 cm, $DC = 3$ cm

TEACHER NOTES

ID: 8183

Exercises

The exercises in this section reinforce the skills learned in this activity.

Student Solutions

1.
$$BD = 9$$
 in.

2.
$$DC = 16$$
 in.

3.
$$BD = 3\sqrt{6}$$
 in.

4.
$$BD = 5\sqrt{2}$$
 cm, $AB = 5\sqrt{3}$ cm, and $BC = 5\sqrt{6}$ cm

5.
$$AD = \frac{1}{2}$$
 cm, $AB = \frac{\sqrt{17}}{2}$ cm, and $BC = 2\sqrt{17}$ cm