Problem 1 – One Midsegment

Open a new $Cabri^{TM}$ Jr. file. Construct a triangle using the **Triangle** tool.

Select the **Alph-Num** tool to label the vertices *A*, *B*, and *C* as shown.

Note: Press <u>enter</u> to start the label, and then press <u>enter</u> again when you are ready to end the label.

Construct the midpoints of two sides of the triangle using the **Midpoint** tool. Label the midpoints *D* and *E*.

Save this file as *MIDSEG*. This setup will be used again in Problem 2.

Select the **Segment** tool and construct \overline{DE} .

CABRI JUNIOR APP

1. Use the **D. & Length**, **Angle**, and **Slope** tools in the **Measure** menu to explore the properties of the midsegment. Fill in the blanks below.

Length of _____ = ____

Length of _____ = ____

Measure of ∠ ____ = ____

Measure of ∠ ____ = ____

Slope of ____ = ____

Slope of ____ = ____

2. What conjectures can you make about the midsegment \overline{DE} and its relationship to $\triangle ABC$? Be sure to drag the vertices of $\triangle ABC$ around the screen to confirm your conjectures.

Midsegments of Triangles

Student Activity

Name _____

Use the **Calculate** tool to find the ratio of the lengths of sides *BC* and *DE*. Select the measurement of *BC*, then press the division symbol, and then select the measurement of *DE*. Move the ratio to an open space on the screen and press enter.

3. Drag a vertex of $\triangle ABC$ and observe the results.

Length of $\overline{DE} = \underline{}$

Length of
$$\overline{DE} = \underline{}$$

Ratio = _____

4. Complete the conjectures.

The length of the midsegment is ______.

The slope of the midsegment is . .

5. What is the relationship between $\triangle ADE$ and $\triangle ABC$? How would you prove it?

Problem 2 - Three Midsegments

Open the Cabri Jr. file MIDSEG created in Problem 1.

Create the midpoint of the third side of the triangle and label it *F*.

Construct $\triangle DEF$ using the **Triangle** tool.

6. Use the **D. & Length** and **Area** tools in the **Measure** menu to measure the perimeter and area of $\triangle DEF$ and $\triangle ABC$.

Perimeter of △ABC = _____

Perimeter of $\triangle DEF =$

Use the **Calculate** tool to find the ratio of the perimeters and areas. Take the larger value and divide by the smaller value.

7. Drag a vertex of $\triangle ABC$ and observe the results.

Ratio of Perimeters = _____

Ratio of Areas = _____

- **8.** What is the relationship between $\triangle DEF$ and $\triangle ABC$? How would you prove it?
- **9.** What is the relationship between $\triangle DEF$ and $\triangle ADE$? How would you prove it?

Apply the Math

Use this diagram for each exercise. *D*, *E*, and *F* are all midpoints.

- **10.** If DE = 6.2 inches, and AB = 11.4 inches, find the lengths of \overline{BC} and \overline{EF} .
- 11. If the perimeter of $\triangle ABC$ is 32 cm, find the perimeter of $\triangle DEF$.
- **12.** If the area of $\triangle DEF$ is 8.6 cm², find the areas of $\triangle ABC$, $\triangle ADE$ and $\triangle BDF$.
- 13. If $m\angle AED = 27^{\circ}$ and $m\angle A = 64^{\circ}$, find as many other angle measures as possible.